De/Segelflug

From FlightGear wiki
Revision as of 13:43, 15 June 2015 by Dg-505 (talk | contribs) (further translating)
Jump to navigation Jump to search
Die Übersetzung dieses Artikels ist in Bearbeitung.
Bocian being towed by a Piper J3 Cub.

Segelfliegen ist eine Freizeitaktivität und ein wettbewerbsfähiger Luftsport in welchem die Piloten unmotorisierte Flugzeuge fliegen (Segelflugzeuge oder Gleiter), indem sie natürlich vorkommende aufsteigende Luftströmungen nutzen, um in der Luft zu bleiben.

In einem weiteren Sinne beschreibt dieser Artikel, wie man Segelflugzeuge, Motorsegler, Hängegleiter und Gleitschirme fliegt, wie man unmotorisierte Flüge plant, wie man das Wetter angemesen einstellt, wie man Segelflugzeuge startet, und wie man aufsteigende Luftmassen ausnutzt.

BemerkungIn den meisten Fällen werden beim Segelflug metrische Einheiten verwendet: Flughöhe in Metern und Geschwindigkeit in m/s bzw. km/h - In diesem Artikel folgen wir dieser Konvention.

Grundlagen des Segelflugs

Jedes Flugzeug muss bei einem Flug mit konstanter Geschwindigkeit den Luftwiderstand mit Vortrieb und die Schwerkraft mit Auftrieb ausgleichen. Gewöhnlich stellt das Triebwerk die erforderliche Energie zur Verfügung. Ein Segelflugzeug dagegen nutzt seine Flughöhe (bzw. potentielle Energie) um Luftwiderstand und Gravitation zu überwinden. Also kann ein Segelflugzeug aus einer bestimmten Höhe nur eine gewisse Strecke weit gleiten. Das Gleitverhältnis/Gleitzahl gibt an, wie weit ein Segelflugzeug aus einer bestimmten Höhe kommt. Ein Hochleistungsflugzeug z.B. mit einem Gleitverhältnis von 1:50 (Gleitzahl 50) kann aus 1 m Höhe 50 m weit gleiten.

Die Gleitzahl ist keine feste Größe, sondern hängt von der Fluggeschwindigkeit ab. Jedes Segelflugzeug hat eine bestimmte Geschwindigkeit, wo die Gleitzahl maximal ist (gewöhnlich liegt diese Geschwindigkeit zwischen 90 und 120 km/h). Wenn das Flugzeug schneller fliegt, vergrößert sich die Sinkrate. Wenn man langsamer fliegt, verringert sich zwar die Sinkrate, da jedoch die Geschwindigkeit sich auch verringert, liegt die Gleitzahl dennoch unter dem Optimum. In unbewegter Luft muss ein Segelflugzeug mit der Geschwindigkeit für bestes Gleiten geflogen werden, um optimale Flugleistungen zu erzielen.

Der Einfluss des Windes

Wind hat einen entscheidenen Einfluss auf die Gleitzahl, die erreicht werden kann. Normalerweise möchte ein Segelflugpilot wissen, ob er einen bestimmten Punkt am Boden erreichen kann und in welcher Höhe (Flugplatz zum Landen, Gebirgspass zum überqueren, ...). Angenommen wir haben aktuell eine Flughöhe von 1000 m und eine maximale Gleitzahl von 1:40 bei 110 km/h - d.h. wir erreichen bei Windstille einen Flugplatz in 40 km Entfernung. Bei einem Gegenwind von 40 km/h beträgt unsere Geschwindigkeit über Grund nur noch 70 km/h, und daher wird die wirksame Gleitzahl um 70/110 auf ungefähr 1:25 reduziert, obwohl wir mit der Geschwindigkeit für bestes Gleiten fliegen.

Das kann dramatische Einflüsse auf Hängegleiter haben, die mit deutlich geringeren Geschwindigkeiten fliegen: Ein Hängegleiter, der mit 35 km/h gegen 35 km/h Gegenwind fliegt, bleibt stationär über dem Boden und hat eine wirksame Gleitzahl von null - um voran zu kommen, muss er schneller fliegen. Für langsame Segler haben Windrichtung und -Stärke einen bedeutenden Einfluss auf jede Entscheidung, die getroffen wird.

Allgemein gilt, um die beste wirksame Gleitzahl zu erreichen, fliegt man gegen den Wind schneller als die Optimalgeschwindigkeit, und mit dem Wind langsamer als die Optimalgeschwindigkeit.

Einfluss von Auf- und Abwinden

Die Vertikalbewegung der Luft hat ebenfalls einen ausgeprägten Einfluss auf die wirksame Gleitzahl. Angenommen wir fliegen in einer mit 0,5 m/s aufsteigenden Luftmasse wieder mit 110 km/h. Das vergrößert die Gleitzahl um 1/0,5 auf 1:80, da wir eigentlich nur mit 0,5 m/s sinken. Es geht sogar noch besser: Wir verringern die Fluggeschwindigkeit auf 70 km/h um eine Sinkrate von 0,7 m/s zu erreichen. In ruhiger Luft würde dies einer Gleitzahl von 1:36 entsprechen, wäre also unklug. Aber in aufsteigender Luft sinken wir nur mit 0,2 m/s was einer Gleitzahl von 1:125 entspricht. In sinkender Luft passiert natürlich genau das Gegenteil.

Die daraus abgeleiteten Regeln sind: Fliege langsamer als die Optimalgeschwindigkeit in aufsteigender Luft, schneller in sinkender Luft. Falls die minimale Sinkrate gleich der Vertikalgeschwindigkeit der aufsteigenden Luft ist, verliert man überhaupt keine Höhe. Generell gilt: In jeder Luftmasse, die aufsteigt, muss das Segelflugzeug mit der Geschwindigkeit für geringstes Sinken geflogen werden (die immer niedriger ist als die Geschwindigkeit für bestes Gleiten), um den Höhengewinn zu maximieren. Dies vereinfacht auch das Fliegen enger Kreise in engen Aufwinden.

In der Praxis sind Wind und Auftrieb der Luft variabel, und man berechnet die Gleitzahl nicht, sondern schätzt sie aufgrund von Erfahrungswerten ab.

Die Ursachen der Aufwinde

Es gibt drei primäre Quellen für Aufwinde, die von Segelflugzeugen genutzt werden können: Thermik, Hangaufwinde, und atmosphärische Wellen. Prinzipiell sind alle drei in FlightGear verfügbar, wenn man das Detaillierte Wettersystem verwendet.

Thermische Aufwinde

Wenn genügend Sonneneinstrahlung herrscht, wird der Boden erwärmt, wodurch eine dünne bodennahe Luftschicht erwärmt wird. Da warme Luft leichter als kalte Luft ist, kann unter gewissen Umständen die Lage instabil werden und ein erwärmtes Luftpaket nach oben steigen, was einen Schlauch mit aufsteigender Luft schafft, eine Thermik (auf die genaueren meteorologischen Vorgänge einzugehen, würde hier zu weit führen). Da das Luftpaket aufsteigt, verliert es mit zunehmender Höhe Energie, es kühlt ab. Sobald es das Kondensationsniveau errreicht, bildet sich eine Cumuluswolke, die die Position der Thermik anzeigt.

Als Segelflugpilot kann man die Thermik nutzen, indem man darin kreist, und so Höhe gewinnt. Ein durchschnittlich guter Thermikschlauch (im Segelfliegerjargon auch Bart genannt) enthält mit etwa 2-4 m/s aufsteigende Luft. Jedoch gilt: Wo Luft aufsteigt, da muss sie auch wieder runter - Gewöhnlich sind thermische Aufwinde von sinkenden Luftmassen umgeben, und konvektive Bewegung der Luft erzeugt auch Turbulenz. Daher ist an thermisch guten Tagen die Luft häufig recht unruhig.

Obwohl der Thermikschlauch bis weit in die Wolke hineinreicht, steigt ein Segelflugzeug normalerweise nur bis zur Wolkenuntergrenze (Basis). In die Wolke hinein zu fliegen ist sehr gefährlich, denn die Sichtweite geht schlagartig auf null zurück, und man kann vollständig die Orientierung verlieren.

Cumulonimbuswolken sind in gewisser Weise Weiterentwicklungen von Cumuluswolken und sind charakteristisch für Gewitterstürme. Obwohl sie starke Aufwinde besitzen, sollten sie aus verschiedenen Gründen (starke Turbulenz, durch die das Flugzeug zerbrechen kann, Gefahr durch Hagel und Vereisung, Blitzschlag, ...) nicht für Segelflug genutzt werden.

Soaring thermals01.jpg Soaring thermals02.jpg

Hangaufwind

Trifft ein ausreichend starker Wind unter geeignetem Winkel auf ansteigendes Gelände, wird der Luftstrom nach oben hin abgelenkt und es wird ein aufsteigender Luftstrom an der windwärts gerichteten Seite des Hanges generiert. Jedoch zeigt der Luftstrom hinter dem Kamm nach unten ins Tal, wodurch auf der Leeseite des Hanges starkes Sinken auftritt. Für gute Hangflugbedingungen muss der Wind stärker als 10 kt sein und im Idealfall senkrecht zum Hang wehen. Stärkerer Wind erzeugt auch stärkeren Aufwind, macht aber die Flugplanung schwieriger (siehe oben).

Das Gebiet des Aufwindes ist häufig sehr nah am Boden, wodurch man gefährlich nahe an vielleicht unzugänglichem Gelände fliegen muss, um gute Aufwinde zu erhalten. Ridge lift01.jpg Ridge lift02.jpg

Atmosphärische Wellen

Bei starkem Wind, wenn die Luft hinter einer Bergkette absinkt, kann sie vom Boden "abprallen" und im Lee der Gebirgskette ein Muster von aufsteigenden und fallenden Wellen bilden (siehe dieses Bild). Diese Wellen bieten laminare Aufwinde fast ohne Turbulenz, welche sehr hoch reichen können - In Wellen wurde schon über 10 km Flughöhe errreicht.

Typischerweise bilden sich Wellen deutlich hinter einer ausgeprägten Gebirgskette bei Windstärken von 30 kt und mehr und wenn der Wind ungefähr senkrecht zur Bergkette steht. An der Untergrenze befindet sich ein sehr turbulenter "Rotor", und linsenförmige Lenticulariswolken zeigen häufig die Obergrenze der Welle an (Maximaler Aufwind herrscht vor der Lenticulariswolke).

Wellenaufwinde sind schwer zu finden, aber einfach zu fliegen: Das Aufwindgebiet ist sehr groß, es gibt keine Turbulenz, und man kann den Segler gegen den Wind fast stationär über Grund halten, während man entfernt von Boden und Wolken aufsteigt.

Einrichten eines Segelflugs

Mit einem Segelflugzeug ist es wichtig, einen festen Plan zu haben, was man vorhat, bevor man FlightGear startet, da einige wichtige Einstellungen in der Kommandozeile gemacht werden. Außerdem sollte man sich für einen Typ Aufwind entscheiden - Hangaufwind gibt es nur in bergigem Gelände, man muss es von der Startposition aus erreichen können; Thermik ist nachmittags am stärksten und nicht über offenem Wasser vorhanden.

Ein Segelflugzeug wählen

FlightGear hat einige Segelflugzeuge:

und dazu mit dem Scheibe "Falke" 25b und der Grob G 109 auch zwei Motorsegler.

Die Flugzeuge können von dieser Seite heruntergeladen werden.

Startposition

Nicht jedes Segelflugzeug kann von einer Startbahn aus gestartet werden, also braucht man eventuell einige Extra-Optionen in der Komandozeile. Eine Möglichkeit besteht darin, den Segler in der Luft zu starten, in dem man so etwas wie

--altitude=3000 --vc=70 --heading=180

hinzufügt. Das startet den Flieger auf 3000 ft MSL mit einer Geschwindigkeit von 70 kt und einem Kurs von 180 Grad.

Um dies in FGRun einzustellen, gehe zur letzten Seite, gehe zu Advanced -> Initial Position und gib in die Felder "Altitude", "Heading" und "Airspeed" die Werte 3000, 180 und 70 ein.

Hängegleiter und Paragleiter starten von Bergen, indem man einen Hang hinunter rennt, bis genug Auftrieb vorhanden ist. D.h. mann sollte das Gelände ein wenig kennen lernen um eine gute Startposition finden zu können. Eine typische Startposition könnte z.B.

--lon=-122.4942234 --lat=37.6980674 --heading=270 –on-ground

sein (Dies ist Half Moon Bay in der Standard-Szenerie bei San Francisco).


Startmethoden

Die meisten verfügbaren Segelflugzeuge müssen nicht in der Luft gestartet werden, sondern können wie inder Realität durch Winden- oder Flugzeugschlepp gestartet werden.

Windenstart

Windenstart ist möglich mit dem Bocian, der ASK21, der ASK-13 und der DG-101. Bei dem Bocian kan man mit einem Klick auf das Gelände die winde an einem beliebigen Punkt platzieren; bei den anderen wird die Winde mit Ctrl+W direkt vor dem Segelflugzeug platziert. Durch Drücken von w wird die Winde gestartet(bei der ASK13 gedrückt halten) und, oben angekommen kann das Seil mit W ausgeklinkt werden. Siehe auch das Menü Hilfe -> Flugzeug Hilfe für Details

Flugzeugschlepp

Für F-Schlepp gibt es zwei Methoden: KI oder Multiplayer-Pilot. Um F-Schlepp mit der KI durchzuführen, wähle entweder die ASK13, den Bocian oder die DG-101G, starte in KRHV und wähle das Szenario "KRHV_towing_demo" in der Liste in FGRun. Du solltest eine Piper J3 Cub sehen, die auf einem Taxiway in deine Richtung rollt und in der Nähe deines Segler anhält. Mit Ctrl+o klinkst du das Seil ein, und mit O klinkst du aus.

Für F-Schlepp im Multiplayer benötigst du natürlich einen anderen Piloten, der das Schleppflugzeug steuert - detaillierte Anweisungen gibt es in diesem Artikel (englisch).

Die DG-101G hat eine dritte Vaiante des F-Schlepps implementiert: einen Schlepp-Roboter, welcher mit D platziert und mit den gleichen Tasten wie der KI-Flugzeugschlepp eingeklinkt wird. Mit d startest du den Schlepp-Roboter.

Vom Boden aus

Die JSBSim version des airwaveXtreme wird gestartet, indem man einen steilen Hang hinunter läuft. Siehe auch die Dokumentation des Gleiters für Details.

In der Luft

Segelflugzeuge, die UIUC als FDM verwenden, können (noch) nicht via Winde oder F-Schlepp gestartet werden. Solche Segler müssen wie oben beschrieben in der Luft gestartet werden.

WIP.png Angefangene Arbeiten
Dieser Artikel oder Abschnitt wird in die kommenden Stunden oder Tagen bearbeitet werden.
Bemerkung: Still translating. Should be finished within a couple of days
Sehen Sie die Geschichte für die neuesten Entwicklungen.

Setting the weather

The next step is to configure weather. In reality, you would take a look at the weather and decide what is possible to do with a glider. In Flightgear, it is possible to choose the weather based on what you would like to do. Dependent on the weather system used, the steps are a bit different. In general, it is recommended to use Advanced Weather for glider flights.

Basic Weather

Schleicher ASK 21 gliding in the Pinzgauer Spaziergang thermals scenario

In Basic Weather, thermals and sinks can be used but must be defined individually in a thermal scenario file. To see how this is done it would be best to examine the file called $FG ROOT/AI/thermal_demo.xml, which sets up 11 thermals and 6 sinks around San Francisco Bay. To learn more about AI scenarios in general, see the related article called AI Systems. Note that the thermals and sinks exist independently of FlightGear's Basic Weather system, so it's possible to have cloud layers that don't match your thermal heights or thermals which do not move with the wind. To prevent this you may want to manually set the cloud layers to match your thermals and match AI-defined winds with the winds set in the weather. Also, cap clouds do not match the default clouds in shape. If you'd like to discover the Austrian alpine region with AI thermals, you might want to read Pinzgauer Spaziergang.

Ridge lift works well with Basic Weather. Typically winds should be chosen to be perpendicular to a slope between 10 and 20 kt for good ridge lift conditions. When using the wind layer interface, it is important to set not only the aloft winds but also the boundary layer winds to this value. This makes for a nasty landing, as the winds even close to touchdown in the valleys blow at full strength, but since ridge lift is only strong close to the terrain, a glider using ridge lift is almost always in the boundary layer zone, and if the boundary layer winds are reduced to get the landing conditions in the valleys right, ridge lift on the slopes collapses as well.

Advanced Weather

The Local Weather package (for Flightgear 2.0.x and 2.4.x) or Advanced Weather (2.6.x) has the option to automatically generate thermals along with the convective clouds. For this, the checkbox 'generate thermals' has to be selected. The slider 'thermal properties' modifies the behaviour of the thermals - for 'low convection' it will generate little turbulence, thermals with a large radius and only modest lift, for 'rough day' it will generate strong lift and turbulence in narrow thermals.

The convective cloud system generates rather realistic results:

  • the number of thermals is maximal around noon and the strength of thermals is maximal in the early afternoon
  • the probability to find a thermal depends on terrain - elevated points and surfaces which heat up well are more likely to generate thermals than ice or open water
  • not every cloud has a thermal associated, not every thermal is usable
  • sometimes blue thermals (i.e. without a cap cloud) are created

As a result, you will almost never find good soaring conditions early in the morning or strong thermals over the sea. Any 'high pressure' weather situation will generate at least some amount of convective clouds, low pressure situations usually do not.

In order to set up ridge lift, select wind model 'constant' and set the wind perpendicular to the slope with 10-20 kt. Advanced Weather computes the boundary layer dynamically dependent on terrain, as a result there will be a realistic reduction of windspeed for a landing in the valley but not at mountain slopes.

Advanced Weather has a working model for wave lift, but so far no way of automatically detecting the conditions which lead to a lee wave, thus in order to use it, some Nasal coding is required.

Learn the theory

For those wishing to gain a more in-depth knowledge of correct glider operation, the FAA glider handbook makes good reading.

Belege

Related content