Flying the Shuttle - Final Approach: Difference between revisions

Jump to navigation Jump to search
Line 7: Line 7:
== What are we trying to do? ==
== What are we trying to do? ==


In the very last part of its flight, the Space Shuttle flies like an airplane. Yet,it's design is a compromise between a small launch weight, a body that is suitable for hypersonic aerobraking and can withstand the heat generated by atmospheric entry and aerodynamical flight. As a result, it's aerodynamics is more similar to a brick than to a glider. Even at its best, the glide ratio is about 4.5, much less during supersonic flight.
In the very last part of its flight, the Space Shuttle flies like an airplane. Yet, its design is a compromise between a small launch weight, a body that is suitable for hypersonic aerobraking and can withstand the heat generated by atmospheric entry and aerodynamical flight. As a result, it's aerodynamics is more similar to a brick than to a glider. Even at its best, the glide ratio is about 4.5, much less during supersonic flight.


As a result, the glidepath is fairly steep (about 17 degrees, more than five times of what a commercial airliner flies on approach) and the touchdown speed is unusually high (about 200 kt). Yet, the landing gear of the shuttle is as fragile as a normal landing gear, thus touchdown has to be gentle. And since the Shuttle is a glider, there is just one chance.
As a result, the glidepath is fairly steep (about 17 degrees, more than five times of what a commercial airliner flies on approach) and the touchdown speed is unusually high (about 200 kt). Yet, the landing gear of the shuttle is as fragile as a normal landing gear, thus touchdown has to be gentle. And since the Shuttle is a glider, there is just one chance.
1,360

edits

Navigation menu