Flying the Shuttle - Entry: Difference between revisions

Jump to navigation Jump to search
Line 30: Line 30:


The density of the ambient atmosphere largely sets the deceleration force and thermal load, and the altitude determines the atmosphere density, hence to manage the deceleration force and thermal load, the vertical speed needs to be controlled. As soon as the transition to aerodynamical flight is made, aerodynamical lift provides the means to do so.
The density of the ambient atmosphere largely sets the deceleration force and thermal load, and the altitude determines the atmosphere density, hence to manage the deceleration force and thermal load, the vertical speed needs to be controlled. As soon as the transition to aerodynamical flight is made, aerodynamical lift provides the means to do so.
As lift builds up, the descent of the Shuttle will slow down, come to a halt and, if no further action is taken, will turn into a rise, i.e. the orbiter is able to 'bounce' off the atmosphere. This is different from the entry trajectory of a non-lifting body (such as the Vostok-1 spacecraft modeled in FG) which undergoes a so-called ballistic entry, i.e. it will penetrate the atmosphere till drag eventually stops it. Ballistic entries consequently are much harder both in peak g and thermal loads. The sinkrate when reaching the upper atmosphere essentially determines how deeply the Shuttle will penetrate at near-orbital velocity and how hard the deceleration will be. On a normal de-orbit, sinkrates are well within acceptable limits, but entry trajectories for scenarios like a three engine failure during launch may not be survivable.
Once the initial vertical descent comes to a halt, the vertical velocity can be actively controlled to manage heat and deceleration force - if the shuttle is steered upward, heat load and deceleration decrease, if downward heat load and deceleration increase. In a normal airplane, one would use the elevator to control AoA and simply steer down. In the Shuttle, this is not an option, because, as explained above, the AoA is fixed by the need to have thermal protection. The solution is to roll the orbiter to a high bank angle (up to 70 degrees) to reduce lift.
[[File:Shuttle entry02.jpg|600px|High bank roll of the Space Shuttle on entry]]
The combination of 40 degree upward pitch and 70 degree roll is something not usually experienced by pilots. In such a confguration, the lift now acts <i>sideways</i>, i.e. the orbiter changes course. This may be desirable to steer the trajectory towards a landing site, or it may not. In the second case, the roll needs to be reversed periodically ('roll reversal') to steer the ground track into an S-shape around the desired trajectory.
Using a combination of high bank angle, low bank angle and roll reversals, direction and deceleration rate are managed to steer the orbiter to the landing site.
[[File:Shuttle entry03.jpg|600px|High bank roll of the Space Shuttle on entry]]
Note that the heat load is proportional to the dynamical pressure qbar times the velocity relative to the air, whereas the structural load is proportional to qbar. Thermal management is thus most important at the initial high-velocity phase in which the deceleration force is modest, and only when thermal management is over, trajectory deceleration control becomes important. For the same reason, the pitch angle can be gradually reduced with Mach number, ending in a just 14 degree pitch at Mach 2.5 where the TAEM interface is reached.
<b>Since aerodynamical forces push the shuttle into a low AoA configuration, a high pitch angle, once lost, is not easily recoverable. It is best established outside the atmosphere where qbar is low and kept during entry, only to be relaxed in the final phase.</b>
1,360

edits

Navigation menu