Professional and educational FlightGear users: Difference between revisions

Jump to navigation Jump to search
More research
(More research)
(One intermediate revision by the same user not shown)
Line 52: Line 52:
* '''Delft University of Technology''', the Netherlands  
* '''Delft University of Technology''', the Netherlands  
** FlightGear was used for the ICE project. The goal was to design, test, and evaluate computational techniques that can be used in the development of intelligent situation-aware crew assistance systems. Using methods from artificial intelligence, ICE focused primarily on the data fusion, data processing and reasoning part of these systems. <ref>{{cite web |url=http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/index.html |title=The Intelligent Cockpit Environment (ICE) Project |last=Ehlert |first=Patrick |date=18 January 2005 |publisher=TU Delft }}</ref><ref>{{cite web |url=http://mmi.tudelft.nl/pub/patrick/Ehlert.P.A.M-GAMEON2002.pdf |title=Recognising situations in a flight simulator environment |date=November 2002 |author=Ehlert P.A.M., Mouthaan Q.M., Rothkrantz L.J.M. |accessdate=18 April 2012 |publisher=SCS Publishing House }}</ref><ref>{{cite web |url=http://www.kbs.twi.tudelft.nl/People/Students/D.Dragos/back/ice/index.htm |title=The ICE Project |author=Datcu Dragos |date=January 2003 |accessdate=8 May 2012 }}</ref>
** FlightGear was used for the ICE project. The goal was to design, test, and evaluate computational techniques that can be used in the development of intelligent situation-aware crew assistance systems. Using methods from artificial intelligence, ICE focused primarily on the data fusion, data processing and reasoning part of these systems. <ref>{{cite web |url=http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/index.html |title=The Intelligent Cockpit Environment (ICE) Project |last=Ehlert |first=Patrick |date=18 January 2005 |publisher=TU Delft }}</ref><ref>{{cite web |url=http://mmi.tudelft.nl/pub/patrick/Ehlert.P.A.M-GAMEON2002.pdf |title=Recognising situations in a flight simulator environment |date=November 2002 |author=Ehlert P.A.M., Mouthaan Q.M., Rothkrantz L.J.M. |accessdate=18 April 2012 |publisher=SCS Publishing House }}</ref><ref>{{cite web |url=http://www.kbs.twi.tudelft.nl/People/Students/D.Dragos/back/ice/index.htm |title=The ICE Project |author=Datcu Dragos |date=January 2003 |accessdate=8 May 2012 }}</ref>
** FlightGear is often used to provide the visuals on [http://www.lr.tudelft.nl/en/cooperation/facilities/simona/the-simona-research-simulator/ SIMONA], a 6-DOF research flight simulator.
** FlightGear is often used to provide the visuals on [http://www.lr.tudelft.nl/en/cooperation/facilities/simona/the-simona-research-simulator/ SIMONA], a 6-DOF research flight simulator. For example:
*** Study on whether  simulator-based training of pilot responses to unexpected or novel events can be improved by including unpredictability and variability in training scenarios.<ref>{{cite web |url=https://journals.sagepub.com/doi/pdf/10.1177/0018720818779928 |title=Training Pilots for Unexpected Events: A Simulator Study on the Advantage of Unpredictable and Variable Scenarios |first=Annemarie |last=Landman |date=September 2018}}</ref>
* The German based '''Hamburg University of Applied Sciences''' used JSBSim and FlightGear to evaluate the handling qualities of a box wing aircraft.<ref>{{cite web |url=http://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/Airport2030_PUB_DLRK_12-09-10_Caja.pdf |title=Box Wing Flight Dynamics in the Stage of Conceptual Aircraft Design |author=Caja R., Scholz D. |date=23 November 2012}}</ref>
* The German based '''Hamburg University of Applied Sciences''' used JSBSim and FlightGear to evaluate the handling qualities of a box wing aircraft.<ref>{{cite web |url=http://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/Airport2030_PUB_DLRK_12-09-10_Caja.pdf |title=Box Wing Flight Dynamics in the Stage of Conceptual Aircraft Design |author=Caja R., Scholz D. |date=23 November 2012}}</ref>
* For studentproject Daedalus, the Technical University of München uses FlightGear to optimize the flight characteristics of a zeppelin as well to simulate its performance. Another goal is to simulate prerecorded flights from a real model for further analysis. <ref>{{cite web |url=http://www.daedalus.ei.tum.de/index.php/de/mach-mit-mm |title=Mach mit ! - daedalus}}</ref>
* For studentproject Daedalus, the Technical University of München uses FlightGear to optimize the flight characteristics of a zeppelin as well to simulate its performance. Another goal is to simulate prerecorded flights from a real model for further analysis. <ref>{{cite web |url=http://www.daedalus.ei.tum.de/index.php/de/mach-mit-mm |title=Mach mit ! - daedalus}}</ref>
Line 60: Line 61:
* The '''University of Sheffield''', England, modeled and simulated a small UAV in FlightGear and JSBSim. The report describes the whole process of creating an UAV for use in FlightGear.<ref>{{Cite web |url=http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/msc2006/pdf/acq05taa.pdf |title=Modelling and Autonomous Flight Simulation of a Small Unmanned Aerial Vehicle |date=August 2006}}</ref>
* The '''University of Sheffield''', England, modeled and simulated a small UAV in FlightGear and JSBSim. The report describes the whole process of creating an UAV for use in FlightGear.<ref>{{Cite web |url=http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/msc2006/pdf/acq05taa.pdf |title=Modelling and Autonomous Flight Simulation of a Small Unmanned Aerial Vehicle |date=August 2006}}</ref>
* A MOOC on aerodynamics made by the French School '''Supaéro''' uses FlightGear.<ref>{{Cite web | url=https://www.france-universite-numerique-mooc.fr/courses/isaesupaero/25001/Trimestre_4_2014/about | title=Aerodynamics MOOC using FlightGear|date=February 2015}}</ref>
* A MOOC on aerodynamics made by the French School '''Supaéro''' uses FlightGear.<ref>{{Cite web | url=https://www.france-universite-numerique-mooc.fr/courses/isaesupaero/25001/Trimestre_4_2014/about | title=Aerodynamics MOOC using FlightGear|date=February 2015}}</ref>
* '''Durham University''' in England has been using FlightGear as a test bed for developing fault detection and self-healing systems in aircraft.<ref>{{cite web|url = http://dro.dur.ac.uk/17084/1/17084.pdf|title = FlightGear as a tool for real time fault-injection, detection and self-repair|author = Alan Purvis|coauthors = Ben Morris; Richard McWilliam|date = 2015|publisher = Durham Research Online|format = PDF}}</ref>
* '''Durham University''' in England has been using FlightGear as a test bed for developing fault detection and self-healing systems in aircraft.<ref>{{cite web|url = http://dro.dur.ac.uk/17084/1/17084.pdf|title = FlightGear as a tool for real time fault-injection, detection and self-repair|author = Alan Purvis|coauthors = Ben Morris; Richard McWilliam|date = 2015|publisher = Durham Research Online|format = PDF}}</ref>
* '''Cranfield Univeristy''' in the United Kingdom used FlightGear to visualize an airport environment which was then overlayed by a guidance system on a HUD. [[TerraGear]] and [[TerraGear GUI]] to generate the scenery.<ref>{{cite web |url=https://core.ac.uk/download/pdf/20338967.pdf |title=Aircraft head-up display surface guidance system |author=Jinxin Gu |date=November 2013}}</ref>


=== North-America ===
=== North-America ===

Navigation menu