Howto:Use Arduino with FlightGear: Difference between revisions

Jump to navigation Jump to search
Add updated changes and some potential pitfalls
(More cleanup)
(Add updated changes and some potential pitfalls)
(4 intermediate revisions by 4 users not shown)
Line 4: Line 4:
'''[http://www.arduino.cc/ Arduino]''' is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software.  The hardware is a microcontroller designed around an 8-bit or 32-bit microcontroller, with several digital and analog {{Abbr|I/O|Input/Output}} ports.  The software is the [http://arduino.cc/en/Main/Software Arduino {{Abbr|IDE|Integrated Development Environment}}].
'''[http://www.arduino.cc/ Arduino]''' is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software.  The hardware is a microcontroller designed around an 8-bit or 32-bit microcontroller, with several digital and analog {{Abbr|I/O|Input/Output}} ports.  The software is the [http://arduino.cc/en/Main/Software Arduino {{Abbr|IDE|Integrated Development Environment}}].


== Example 1: Controlling internal properties ==
== Example 1: 2-axis joystic ==
<big>By ScottBouch</big>
 
This example demonstrates use of two potentiometers (2-axis joystic) with a simple calibration in arduino code. Example is done with Linux Mint. To see more detailed version of this quide go to [http://www.scottbouch.com/flightgear-sim-arduino-serial-hardware-2-axis-potentiometer-joystick.html 2-Axis Potentiometer Joystick:Integration With Flightgear Flight Sim].
 
=== Wiring ===
Connect 5V to other terminal of potentiometers and 0V to other terminal. Connect potentiometers wiper terminals to Arduino boards A0 and A1.
 
=== Arduino code ===
<syntaxhighlight lang="c">
/*
Flightgear hardware integration 01: Stick X and Y only so far.
 
Scott Bouchard UK www.scottbouch.com 14-06-2017
*/
 
const int stickxio = A0; //Define stick aileron (x) input
const int stickyio = A1; //Define stick elevator (y) input
 
float stickx = 0;        //Start aileron (x) central
float sticky = 0;        //Start elevator (y) central
 
void setup() {
  Serial.begin(9600);    //Open up serial communication to PC
}
 
void loop() {
  stickx  = (analogRead(stickxio)/512.0)-0.99; //Calibration span and offset
  sticky = (analogRead(stickyio)/512.0)-0.99; //Calibration span and offset
 
  Serial.print(stickx);  //Send aileron position
  Serial.print(",");    //Variable (var) separator
  Serial.print(sticky);  //Send elevator position
  Serial.print("\n");    //Line separator
}
</syntaxhighlight>
 
=== Calibration ===
Use Arduino serial monitor to see that serial data acquired from Arduino board is between -1.00...1.00 when potentiometers are rotated. Potentiometers middle position should send 0.00. If potentiometers are not giving good readings, modify Arduino code "Calibration span and offset" row to fix it.
 
=== Flightgear protocol code ===
Create a file called hardware.xml to /usr/share/games/flightgear/Protocol directory and paste following lines to it:
 
<syntaxhighlight lang="xml">
<?xml version="1.0"?>
 
<PropertyList>
 
<generic>
 
<input>
<line_separator>\n</line_separator>
<var_separator>,</var_separator>
 
<chunk>
<name>aileron</name>
<type>float</type>
<node>/controls/flight/aileron</node>
</chunk>
 
<chunk>
<name>elevator</name>
<type>float</type>
<node>/controls/flight/elevator</node>
</chunk>
 
</input>
 
</generic>
 
</PropertyList>
</syntaxhighlight>
 
=== Make Flightgear to read serial data ===
Find port where Arduino is connected. Look from Arduino IDE Tools... Serial Port... Should be something like ttyACM. (Note: Scott Bouch tutorial uses FGRUN which is not used anymore) Start Flightgear and paste following code to Settings... Additional settings... when starting Flightgear. Change serial port to correct port name.
 
<syntaxhighlight>
--generic=serial,in,30,/dev/ttyACM0,9600,hardware.xml
</syntaxhighlight>
 
== Example 2: Controlling internal properties ==
<big>By {{usr|Vaipe}}</big>
<big>By {{usr|Vaipe}}</big>


Line 133: Line 213:
The first number is switch data, so it's either 0 (switch off) or 1 (switch on). After the "," mark is our throttle data. First it's 0.00, which meaning idle throttle and then potentiometer is gradually turned until it reaches 0.99.
The first number is switch data, so it's either 0 (switch off) or 1 (switch on). After the "," mark is our throttle data. First it's 0.00, which meaning idle throttle and then potentiometer is gradually turned until it reaches 0.99.


{{tip|Remember to '''unplug Arduino's USB cable and plug it back'''.
{{Note|Remember to '''unplug Arduino's USB cable and plug it back'''.


FlightGear will not be able to read serial without doing this!
FlightGear will not be able to read serial without doing this!
Line 139: Line 219:
You have to do this every time after you use the Arduino IDE.}}
You have to do this every time after you use the Arduino IDE.}}


==== Start FlightGear ====
{{Note|The above note may not be relevant to newer versions of the Arduino IDE software.}}
 
==== Starting FlightGear ====
 
===== Method 1: Command line =====
===== Method 1: Command line =====
FlightGear needs to be started with a correct command line option for it to be able to read serial connection. This example uses following option:
FlightGear needs to be started with a correct command line option for it to be able to read serial connection. This example uses following option:
<syntaxhighlight>
<syntaxhighlight>
--generic=serial,in,30,/dev/ttyACM0,controltest
--generic=serial,in,30,/dev/ttyACM0,9600,controltest
</syntaxhighlight>
</syntaxhighlight>


===== Method 2: FGRun =====
===== Method 2: FGRun =====
Alternatively, you can use FlightGear's graphical user interface (FGRun) to launch Flightgear. Select the correct settings from Advanced Option tab. [[File:Starting Flightgear with input options enabled.jpg|thumb|none|Starting Flightgear with FGRun, selecting input/output options]]
Alternatively, you can use FlightGear's graphical user interface (FGRun) to launch FlightGear. See the image below for the correct settings.
[[File:Starting Flightgear with input options enabled.jpg|thumb|none|Starting Flightgear with FGRun, selecting input/output options]]
 
If you don't know your correct port is , you can check it with a following command in terminal:
<syntaxhighlight>
dmesg | tail
</syntaxhighlight>
It should give you a message something like <code>ttyACM0: USB ACM device</code> or <code>ttyACM1: USB ACM device</code>.
 
{{Note|This command gives you the last event in the stack,


If you don't know your correct port, you can check it with a following command in terminal: dmesg | tail. It should give you a message something like: "ttyACM0: USB ACM device" or "ttyACM1: USB ACM device". That's your port. Finally save setting by clicking 'OK' and click 'Run' to start flightgear. For a more detailed guide, see [https://sites.google.com/site/flightgeararduinoandlinux/home Flightgear, Arduino and Linux]
so you need to make sure you plug in or unplug your Arduino to the serial port


immediately prior to running the command.}}
That is your port. Finally, save setting by clicking "OK" and click "Run" to start FlightGear. For a more detailed guide, see [https://sites.google.com/site/flightgeararduinoandlinux/home Flightgear, Arduino and Linux]
{{Note|In some installations you need set permission for $user
to the groups tty and dialout or the Arduino will fail to
establish a connection to FlightGear.}}
== Example 3: Outputting properties ==
<big>By {{usr|Rubdos}}</big>
[[File:Arduinofgfs.jpg|thumb|270px|Arduino LCD panel displaying speed, heading and altitude.]]
[[File:Arduinofgfs.jpg|thumb|270px|Arduino LCD panel displaying speed, heading and altitude.]]
== Example ==
This example uses the example using the [[Generic protocol]] and an [http://arduino.cc/en/Main/arduinoBoardMega2560 Arduino Mega 2560].
{{usr|Rubdos}} (Ruben De Smet) has built an example using the [[generic protocol]] and an Arduino Mega 2560.
Below is the protocol XML file used to control the Arduino.
The code used to control the Arduino with generic protocol was:
<syntaxhighlight lang="xml">
<syntaxhighlight lang="xml">
<?xml version="1.0"?>
<?xml version="1.0"?>
Line 195: Line 298:
</PropertyList>
</PropertyList>
</syntaxhighlight>
</syntaxhighlight>
It is a simple plaintext protocol, which can easily be parsed by an Arduino. The code used on the Arduino is available on github as a gist: [https://gist.github.com/rubdos/5422870]


As hardware, five seven segment displays were used, multiplexed straight on the Arduino device. In production, you'd rather use some 74HC595 or other shift register chips to drive them, to unload the Arduino and have more current.
Below is the C code used for the example, taken from https://gist.github.com/rubdos/5422870.
A demo is uploaded to youtube, with voiceover in which the display shows the RPM of the first engine of (the single engine) [[DR400]]: [https://www.youtube.com/watch?v=lVtV9-CgqBo]
<syntaxhighlight lang="c">
//PIN 0 -> 7 has positive segment part
 
// the setup routine runs once when you press reset:
void setup() {               
  // initialize the digital pin as an output.
  pinMode(2, OUTPUT);
  pinMode(3, OUTPUT);
  pinMode(4, OUTPUT);   
  pinMode(5, OUTPUT);   
  pinMode(6, OUTPUT);   
  pinMode(7, OUTPUT);
  pinMode(8, OUTPUT);     
  pinMode(9, OUTPUT);   
 
  pinMode(49, OUTPUT); 
  pinMode(50, OUTPUT);
  pinMode(51, OUTPUT);
  pinMode(52, OUTPUT);
  pinMode(53, OUTPUT);
 
  Serial.begin(9600);
}
 
void writeNumber(int nr)
{
  if(nr == 0)
  {
    digitalWrite(2, LOW); // midden
    digitalWrite(3, HIGH); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, HIGH); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 1)
  {
    digitalWrite(2, LOW); // midden
    digitalWrite(3, LOW); // lt
    digitalWrite(4, LOW); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, LOW); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 2)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, LOW); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, HIGH); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, LOW); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 3)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, LOW); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 4)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, HIGH); // lt
    digitalWrite(4, LOW); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, LOW); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 5)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, HIGH); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, LOW); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 6)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, HIGH); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, LOW); // rt
    digitalWrite(6, HIGH); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 7)
  {
    digitalWrite(2, LOW); // midden
    digitalWrite(3, LOW); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, LOW); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 8)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, HIGH); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, HIGH); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else if(nr == 9)
  {
    digitalWrite(2, HIGH); // midden
    digitalWrite(3, HIGH); // lt
    digitalWrite(4, HIGH); // t
    digitalWrite(5, HIGH); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, HIGH); // b
    digitalWrite(8, HIGH); // rb
    digitalWrite(9, LOW); // dot
  }
  else
  {
    digitalWrite(2, LOW); // midden
    digitalWrite(3, LOW); // lt
    digitalWrite(4, LOW); // t
    digitalWrite(5, LOW); // rt
    digitalWrite(6, LOW); // lb
    digitalWrite(7, LOW); // b
    digitalWrite(8, LOW); // rb
    digitalWrite(9, LOW); // dot
  }
}
 
// the loop routine runs over and over again forever
long number = 0;
int decimals[5] = {0, 0, 0, 0, 0};
 
void loop() {
  for(int i = 49; i < 54; i++)
  {
    // Disable the incorrect segment displays
    if(i == 49)
    {
      digitalWrite(53, HIGH);
    }
    else
    {
      digitalWrite(i - 1, HIGH);
    }
    digitalWrite(i, LOW);
   
    // Enable the segments
    writeNumber(decimals[4 - (i - 49)]);
    delay(1);
  }
  if(Serial.available() > 14) // Wait until there are two bytes available. Then read them out.
  {
    String command;
    String var;
    char lastchar;
 
    while(lastchar != '=')
    {
      lastchar = Serial.read();
      if(lastchar != '=')
      {
        command += lastchar;
      }
    }
    while(lastchar != '\n')
    {
      lastchar = Serial.read();
      if(lastchar != '\n')
      {
        var += lastchar;
      }
    }
   
    if(command == "altitude" )
    {
      char buf[50];
      var.toCharArray(buf, 50);
      number = atol(buf);
    }
   
    /*if(number == 10000)
    {
      number = 0;
    }*/
   
    long currentnumber = number;
   
    int remainder = currentnumber % 10;
    currentnumber =  (currentnumber - remainder) / 10;
    decimals[4] = remainder;
   
    remainder = currentnumber % 10;
    currentnumber =  (currentnumber - remainder) / 10;
    decimals[3] = remainder;
       
    remainder = currentnumber % 10;
    currentnumber =  (currentnumber - remainder) / 10;
    decimals[2] = remainder;
           
    remainder = currentnumber % 10;
    currentnumber =  (currentnumber - remainder) / 10;
    decimals[1] = remainder;
           
    remainder = currentnumber % 10;
    currentnumber =  (currentnumber - remainder) / 10;
    decimals[0] = remainder;
  }
}
</syntaxhighlight>
 
The hardware used was five seven-segment displays, multiplexed straight on the Arduino device. Ideally, you'd rather use some 74HC595 or other shift register chips to drive them, to unload the Arduino and have more current.
 
Below is a demo uploaded to YouTube, with voiceover in which the display shows the RPM of [[Robin DR400]]'s single engine.
{{#ev:youtube|lVtV9-CgqBo}}


== Related content ==
== Related content ==
Line 204: Line 540:


== External links ==
== External links ==
* [http://arduino.cc/ Official website]
* [http://arduino.cc/ Official Arduino website]
* [http://playground.arduino.cc/Main/FlightGear FlightGear Serial Communications with Arduino] (tutorial)
* [http://playground.arduino.cc/Main/FlightGear FlightGear Serial Communications with Arduino] (tutorial)
* [http://forum.flightgear.org/viewtopic.php?f=18&t=11126 Arduino LCD and FlightGear] (FlightGear forum)
* [http://forum.flightgear.org/viewtopic.php?f=18&t=11126 Arduino LCD and FlightGear] (FlightGear forum)
330

edits

Navigation menu