High-Level Architecture: Difference between revisions

From FlightGear wiki
Jump to navigation Jump to search
Line 64: Line 64:
For additional information, please see:
For additional information, please see:
* [[Technical_Reports#A_New_Architecture_for_FlightGear_Flight_Simulator]]
* [[Technical_Reports#A_New_Architecture_for_FlightGear_Flight_Simulator]]
* [[Decoupling the AI Traffic System]] (currently work-in progress, highlights the limitations of the current AI system related to distributed/multi-instance and multiplayer usage)
* [[FlightGear HLA support (High Level Architecture)]] (outdated, documenting the original HLA infrastructure code)
* [[FlightGear HLA support (High Level Architecture)]] (outdated, documenting the original HLA infrastructure code)
* [[FlightGear CIGI Support (Common Image Generator Interface)]].
* [[FlightGear CIGI Support (Common Image Generator Interface)]].

Revision as of 18:23, 20 February 2016

Note  The effort described below is listed on the updated FlightGear policy/roadmap document [1] for the 2016 release cycle (respectively 4.x), i.e. can be considered to be "official".
HLA Support
Screenshot showing HLA prototype at LOWI
Screenshot showing HLA prototype at LOWI
Started in 05/2009
Description Implementing support for the High Level Architecture to modularize FlightGear
Contributor(s) Mathias Fröhlich[2][3], James Turner[4], Stuart Buchanan[5], Richard Harrison [6]
Status Under active development (2009-2016)
Changelog


High-Level Architecture (HLA) is a general purpose architecture for distributed computer simulation systems.

Rather than have the entire simulation within a single executable, the simulation is split into different Federates, which interact with each other by a Run-Time Infrastructure (RTI, a message bus that handles serialization of messages, events and objects), with federates typically running in their own threads/processes and each federate process having access to the full virtual process address space provided by the OS instead of having to share it with other subsystems (i.e. 32 bit platforms may make better use of virtual RAM that way).

There are three big advantages to this over a monolithic simulation (e.g. FlightGear V3.6):

  1. It provides a robust environment to make the simulator multi-threaded, taking advantage of computers with multiple cores, or indeed running different parts of the simulation on different computers (including even different platforms and operating systems).
  2. It allows us to split out parts of the simulator such as AI (by Decoupling the AI Traffic System), the FDM, Nasal scripting [1] and Renderer from each other and less time-critical sub-systems such as weather so that we can get consistent (and perhaps higher) frame-rates (i.e. reduced Nasal GC impact on frame rate).
  3. It provides a very good framework to allow anyone to create components that interact with FlightGear using programming languages other than C/C++ (think Ada, Java, Python etc), which may be running in their own threads, and reside in separate binaries[2], which will be also easier to debug/troubleshoot (think regression testing, i.e. running a self-contained subsystem in a dedicated gdb/valgrind session), without having to know how to modify/patch and rebuild FlightGear.

A good overview of how the HLA architecture works can be found here http://www.pitch.se/images/files/tutorial/TheHLAtutorial.pdf.

Design

The planned overall design is as follows:

  • We intend to use OpenRTI as the underlying RTI. This is an open source IEEE 1516 standard RTI, written by Mathias Fröhlich and available from https://sourceforge.net/projects/openrti/.
  • Mathias has also written an open source toolkit to act as an interface library, with a working name of SimKit. This sits on top of the RTI and simplifies interfacing with the RTI massively. It also has excellent Python integration, making it very easy to write scripted Federates.

Using SimKit, the integration point is within the FlightGear code (rather than SimGear), in particular the code under $FG_SRC/Network/HLA.

Federate Object Model

A key part of the design is writing the Federation Object Model (FOM), which defines the objects and updates that are published by the RTI. While it might at first glance seem a good idea to use the FOM to share the internal property tree across multiple federates, this is probably the wrong way to use HLA as the granularity is too low and it's likely to lead to synchonization issues. Instead, we'll need to make explicit decisions about the data models to communicate.

The FOM is a set of XML files in fgdata/HLA/

Current Status

Last updated: (19/02/2016)

Currently, there is some very old HLA support in SimGear. This is very out of date and should be ignored.

Stuart has HLA Support using the latest OpenRTI and SimKit working on a local build, but is waiting for Mathias to officially publish his SimKit before he pushes his changes. So all of the following is local-only, but included here for information.

The Flightgear core currently supports HLA as follows.

  • SimKit integration, reading the SimKit FOM and connecting to an OpenRTI RTI.
  • Instantiating MP AI objects so users can view objects published over the RTI by other Federates. This is currently somewhat unsatisfactory as it overloads the MP code, where really these objects are more basic.

We currently have the following other Federates:

  • fgogel - An AI model written in python the publishes over to the RTI. Part of SimKit, but handy nevertheless!
  • fgtraffic - to run an AI Scenario externally to the FG Core
  • fgmetar - written in python that retrieves the closest METAR station for other published Federates and publishes the METAR for them to pick up. This could be expanded to provide a general Weather Engine.

Separately, Erik has been doing some preparatory work suitable for supporting HLA in JSBSim by adopting so called PropertyObjects to hopefully get rid of tied properties (http://sourceforge.net/p/jsbsim/mailman/message/34720784/)


For additional information, please see:

External links