Es/de Havilland Canada DHC-6 Twin Otter: Difference between revisions

From FlightGear wiki
Jump to navigation Jump to search
Line 70: Line 70:
# Configurar las radios a las frecuencias necesarias, y el altímetro según el QNH o la altitud del aeropuerto si se conoce.
# Configurar las radios a las frecuencias necesarias, y el altímetro según el QNH o la altitud del aeropuerto si se conoce.


{{note|El procedimiento previamente descrito es una versión simplificada. Los procedimientos disponibles desde el simulador incluyen 4 listas con más de 50 puntos.}}
{{note|El procedimiento previamente descrito es una versión simplificada. Los procedimientos disponibles dentro del simulador incluyen 4 listas con más de 50 puntos.}}
[[de:de Havilland Canada DHC-6 Twin Otter]]
[[de:de Havilland Canada DHC-6 Twin Otter]]
[[en:de Havilland Canada DHC-6 Twin Otter]]
[[en:de Havilland Canada DHC-6 Twin Otter]]
[[fr:de Havilland Canada DHC-6 Twin Otter]]
[[fr:de Havilland Canada DHC-6 Twin Otter]]

Revision as of 16:02, 21 May 2020

This article is currently being translated.

Pablc (talk) 18:01, 20 May 2020 (EDT)

de Havilland Canada DHC-6 Twin Otter
FGAddon
El DHC-6 Twin Otter en vuelo
El DHC-6 Twin Otter en vuelo
Cabina del Twin Otter con sombras sobre el panel
Cabina del Twin Otter con sombras sobre el panel
Tipo Avioneta civil, Avioneta militar, Aeronave STOL, Hidroavión
Configuración Aeronave de ala alta, Monoplano, Aeronave de tren de aterrizaje fijo, Aeronave con tren de aterrizaje en triciclo
Propulsión Turboprop aircraft, Twin-engine aircraft
Fabricante de Havilland Canada
Autor(es)
DHC-6 Twin Otter team
  • Syd Adams (Initial model)
  • Christian Thiriot (3D, Textures)
  • Bo Lan (Nasal, FDM, Systems)
  • Jonathan Schellhase (3D, Nasal, Systems, Sound, misc)
  • others (see below)
FDM YASim, JSBSim
--aircraft= dhc6
dhc6F

dhc6S

dhc6p

dhc6pF

dhc6pS

dhc6jsb
Estado Producción avanzada
 FDM Stars-4.png
 Sistemas Stars-4.png
 Cabina de vuelo Stars-5.png
 Modelo Stars-5.png
Soporta Checklists Tutorials Rembrandt
Desarrollo
 Página web La página web para los desarrollos de de Havilland Canada DHC-6 Twin Otter.
 Repositorio El Repositorio de desarrollo de de Havilland Canada DHC-6 Twin Otter.
Descargar Descargar el paquete de avion de Havilland Canada DHC-6 Twin Otter para la versión estable actua (2020.3).
Libreas Navegar por la FlightGear base de datos de libreas para de Havilland Canada DHC-6 Twin Otter.
Forum 'de Havilland Canada DHC-6 Twin Otter' topic on the FlightGear forum.
Licencia GPLv2+

El de Havilland Canada DHC-6 Twin Otter, también conocido cariñosamente como Twotter, es una avioneta STOL (Short Take-off and Landing, o Despegue y Aterrizaje Corto) con capacidad para 20 pasajeros. Es considerado como el proyecto aeronáutico Canadiense con más éxito de la historia. El Twin Otter es una aeronave de ala alta, doble motor turbohélice, tren de aterrizaje de triciclo fijo y cabina no presurizada. FlightGear dispone de tres versiones: con ruedas, con pontones (anfibio) y con esquís.

Historia

El DHC-6 Twin Otter es la evolución del DHC-3 Otter de la misma compañía. El desarrollo del Twin Otter comenzó en 1964, y realizó su vuelo inaugural el 20 de Mayo de 1965[1]. Con el propósito de retener la capacidad STOL del Otter, el DHC-6 recibió dos potentes motores Pratt & Whitney Canada PT6 This is a link to a Wikipedia article turbohélice capaces de producir 410 kW cada uno en la primera versión del avión, el DHC-6-100.

En 1968, el Twin Otter recibió una actualización con la Serie -200, mejorando su capacidad STOL.

Un año después, en 1969, el DHC-6-300 introdujo motores más potentes, los PT6A-27 de 460 kW. A día de hoy, la Serie -300 es, con 614 unidades producidas, la variante más popular del Twin Otter. La serie dejó de producirse en 1988.

Después de 18 años sin ser fabricado, Viking Air compró los derechos de producción a Bombardier Aerospace. Comenzó a producirse una nueva serie, la DHC-6-400, la cual realizó su vuelo inaugural el 1 de Octubre de 2008. El DHC-6-400 equipa aviónica de última generación y motores más potentes, los PTA-34 del mismo fabricante Pratt / Whitney. En verano de 2014, se habían fabricado 55 unidades de la serie -400.

Debido a sus potentes motores, su comportamiento STOL y su espaciosa cabina, el DHC-6 es una aeronave muy popular entre los paracaidistas, así como una buena opción para operar en areas remotas o en desarrollo.

La versión disponible en FlightGear es el DHC-6-300.

Manejo

Inspección previa al vuelo

Para disfrutar de una experiencia lo más realista posible, se recomienda usar la vista de Walker durante la inspección.

  • Morro:
    • Quitar las cubiertas de los tubos de pitot. De no hacerlo, el indicador de velocidad no funcionará. Los tubos se encuentran aproximadamente a la altura de los ojos, delante de las puertas del piloto y copiloto.
    • Comprobar el estado general de los dispositivos del morro (rueda, amortiguador y luz de rodaje), y la presión del neumático.
  • Ala izquierda:
    • Quitar la lona de protección del motor. Si no, el motor no arrancará.
    • Quitar la cinta de amarre
    • Comprobar el estado general del ala, luz de aterrizaje, alerón y flaps
  • Tren de aterrizaje izquierdo:
    • Quitar las cuñas de la rueda
    • Comprobar el estado general del tren y la presión de los neumáticos
  • Cola:
    • Quitar la cinta de amarre
    • Comprobar el estado general del empenaje
  • Tren de aterrizaje derecho:
    • Quitar las cuñas de la rueda
    • Comprobar el estado general del tren y la presión de los neumáticos
  • Ala derecha:
    • Quitar la lona de protección del motor. Si no, el motor no arrancará.
    • Quitar la cinta de amarre
    • Comprobar el estado general del ala, luz de aterrizaje, alerón y flaps

Encendido de los motores

Panel central con indicadores del motor y radios
Panel superior

El Twin Otter es un avión relativamente complejo, como demuestra la larga secuencia de encendido.

  1. Asegurarse de que el freno de estacionamiento está echado, la palanca de potencia (THROTTLE) está en posición IDLE, la palanca de paso de la hélice (PROP) está en posición FEATHER, y la palanca de combustible (FUEL) está cerrada (OFF).
  2. Encender el interruptor principal de alimentación (MASTER) y, en el interruptor de selección de fuente de alimentación, seleccionar la batería (BATTERY). Ambos interruptores se encuentran en el panel superior del piloto.
  3. Encender las luces de cabina y la iluminación del panel de instrumentos
  4. Comprobar que el voltaje se encuentra por encima de 18V; habitualmente se sitúa alrededor de los 24V (encima de las radios)
  5. Comprobar el nivel de combustible en ambos tanques es suficiente de acuerdo al plan de vuelo
  6. Encender los indicadores de cinturón de seguridad (FASTEN BELT) y prohibido fumar (NO SMOKING)
  7. Encender la baliza (BEACON) en el panel superior central
  8. En caso no despegar desde asfalto, es necesario encender los deflectores de admisión para prevenir daños en los motores
  9. Encender las dos bombas cebadoras (AFT/FWD BOOST, bajo los instrumentos del motor en el panel central)
  10. Si la temperatura exterior es inferior a los 0°C, se deben encender los calefactores de los tubos de pitot ('PITOT HEAT') y de los propulsores (PROP DEICE)
  11. Seleccionar BAT en el selector IND (encima de las radios)
  12. Comprobar que no hay nadie en los alrededores de la hélice izquierda
  13. Seleccionar el motor izquierdo (LEFT) en el interruptor de encendido (START), y comprobar que la aguja del GG RPM sube (primer instrumento del panel central empezando por abajo)
  14. Cuando GG RPM alcanza el 12%, tirar de la palanca izquierda de combustible (FUEL)
  15. Una vez PROP RPM se estabiliza, repetir los tres pasos anteriores con el motor derecho
  16. Una vez los dos PROP RPM están estables, apagar el interruptor de encendido
  17. Empujar las palancas de paso de hélice (PROP) completamente hacia adelante
  18. Encender las luces de posición (POSN LT)
  19. Encender los dos generadores
  20. Seleccionar R GEN en el selector IND
  21. Encender el calefactor del parabrisas (HEAT, panel superior del lado del copiloto, marcado como WINDSHIELD)
  22. Comparar el valor del indicador de rumbo con la brújula: si no coinciden, es necesario ajustar el indicador de rumbo mediante el dial de ajuste.
  23. Configurar las radios a las frecuencias necesarias, y el altímetro según el QNH o la altitud del aeropuerto si se conoce.
Nota  El procedimiento previamente descrito es una versión simplificada. Los procedimientos disponibles dentro del simulador incluyen 4 listas con más de 50 puntos.