Advanced weather: Difference between revisions

m
Bot: Fixing redirects
m (Robot: Cosmetic changes)
m (Bot: Fixing redirects)
Line 29: Line 29:
The conditions characteristic for the EV are imposed once the aircraft enters the volume, they are restored to the outside values once the aircraft leaves the region again. The Flightgear AI system already has examples of structures which in essence are EVs - '''thermal''' and '''thunderstorm'''. The first structure contains an EV in which vertical air motion is active, the second one in which turbulence is present. These structures could be generalized to an AI system '''weather''' in which essentially all weather parameters inside the volume could be set by XML tags.  
The conditions characteristic for the EV are imposed once the aircraft enters the volume, they are restored to the outside values once the aircraft leaves the region again. The Flightgear AI system already has examples of structures which in essence are EVs - '''thermal''' and '''thunderstorm'''. The first structure contains an EV in which vertical air motion is active, the second one in which turbulence is present. These structures could be generalized to an AI system '''weather''' in which essentially all weather parameters inside the volume could be set by XML tags.  


On the visual side, parts of the EV must also be tied to visible models. The inside of a cloud can be modelled by reduced visibility, but the outside of the cloud must be a model. Similarly, the inside of a rain front appears as rain generated by the Flightgear system, but the outside must be a 3-d model of a precipitation layer. This means that individual 3-d models for various visible atmospheric phenomena (clouds, precipitation, fog, ...) need to be created (see [[Howto: Modelling Clouds]] for a collection of techniques for creating cloud and precipitation models).
On the visual side, parts of the EV must also be tied to visible models. The inside of a cloud can be modelled by reduced visibility, but the outside of the cloud must be a model. Similarly, the inside of a rain front appears as rain generated by the Flightgear system, but the outside must be a 3-d model of a precipitation layer. This means that individual 3-d models for various visible atmospheric phenomena (clouds, precipitation, fog, ...) need to be created (see [[Howto: Modelling clouds|Howto: Modelling Clouds]] for a collection of techniques for creating cloud and precipitation models).


Outside the EV, many meteorological parameters may vary in a continuous way, for example visibility may decrease from 5000 to 4000 m when flying 20 km north - but inside the cloud (the EV), it will change in a discontinuous way very suddenly to a low value (say 30 m), to jump back to a large value outside the cloud. Thus, the EVs are used to simulate only discontinuous, local changes in conditions, the larger scale changes in the background need to be taken care of by a different system.
Outside the EV, many meteorological parameters may vary in a continuous way, for example visibility may decrease from 5000 to 4000 m when flying 20 km north - but inside the cloud (the EV), it will change in a discontinuous way very suddenly to a low value (say 30 m), to jump back to a large value outside the cloud. Thus, the EVs are used to simulate only discontinuous, local changes in conditions, the larger scale changes in the background need to be taken care of by a different system.