ATC-pie user guide: Difference between revisions

New release: r7 + added screenshots
m (Superfluous 1st-level title)
(New release: r7 + added screenshots)
Line 1: Line 1:
{{forum|83|ATC-Pie support & development}}
{{forum|83|ATC-Pie support & development}}


This section is a guide to help one download and run '''[[ATC-pie]]''', and lists a few tips on some of its features. Other sources to learn to use the program are:
This article is a guide to help one download and run '''[[ATC-pie]]'''. It describes some of its major features and lists a few tips. Other sources to learn the program are:
* the '''online video tutorial''' on ''YouTube'' (follow/bookmark the [https://www.youtube.com/playlist?list=PL1EQKKHhDVJvvWpcX_BqeOIsmeW2A_8Yb link to the full playlist]);
* the '''online video tutorial''' on ''YouTube'' (follow/bookmark the [https://www.youtube.com/playlist?list=PL1EQKKHhDVJvvWpcX_BqeOIsmeW2A_8Yb link to the full playlist]);
* the in-app '''quick reference''' available from the ''Help'' menu (summary of mouse/keyboard gestures, display conventions, etc.).
* the in-app '''quick reference''' available from the ''Help'' menu (summary of mouse/keyboard gestures, display conventions, etc.).
Line 34: Line 34:
| --tower-view-external=''host'' || Avoid running an internal FlightGear process for tower viewing, and specify a host on which a viewer is running. This may still be "localhost". || (none, start internal process)
| --tower-view-external=''host'' || Avoid running an internal FlightGear process for tower viewing, and specify a host on which a viewer is running. This may still be "localhost". || (none, start internal process)
|-
|-
| --tower-view-ports=''udp'',''telnet'' || Specify the tower view ports to send/connect to. These can be the same (UDP+TCP on same port), and are used whether the view is a child (internal), local or remote process. || 5010,5010
| --tower-view-ports=''udp'',''telnet'' || Specify the tower view ports to send/connect to. These can be the same (UDP and TCP on same port), and are used whether the viewer process is internal (child) or external (local or remote). || 5010,5010
|-
|-
| --add-view=''host'':''port'' || Register an additional FlightGear instance to forward MP and solo game packets to. This option can be repeated. || (none)
| --add-view=''host'':''port'' || Register an additional FlightGear instance to forward MP and solo game packets to. This option can be repeated. || (none)
Line 54: Line 54:


== Feature notes ==
== Feature notes ==
This section describes a few major features. See more exhaustive list at the top of this article.
This section describes a few major features. A more exhaustive list can be found in the main article.


=== Routing and conflict warnings ===
=== Routing and conflict warnings ===
ATC-pie analyses routes and assigned vectors to assist traffic management and anticipate path conflicts between controlled aircraft.
ATC-pie analyses routes and assigned vectors to assist traffic management and anticipate path conflicts between controlled aircraft.


[[File:ATC-pie-screenshot-routeDetailsView.png|thumbnail|Route details dialog with world path drawn, available when both end airfields are recognised]]
A '''route''' is parsed for every strip with both recognised departure and destination airports (names shown near respective fields on the strip sheet), as follows:
A '''route''' is parsed for every strip with both recognised departure and destination airports (names shown near respective fields on the strip sheet), as follows:
* route tokens are whitespace-separated;
* route tokens are whitespace-separated;
Line 65: Line 66:
* if ambiguous (navpoint names are not all unique around the world), a waypoint is always the nearest homonym to the point beginning the leg.
* if ambiguous (navpoint names are not all unique around the world), a waypoint is always the nearest homonym to the point beginning the leg.


When a route is parsed and a radar contact linked to the strip, the current route leg is detected based on distance to destination, and:
[[File:ATC-pie-screenshot-routeDrawing.png|thumbnail|Assigned routes can be drawn as dotted lines on the radar scope when linked to contacts]]
Parsed routes on flight plans and strips are viewable in a route dialog, showing leg details and the geodesic paths on a world map. Also, when a route is parsed and linked to a radar contact, ATC-pie works out its current leg based on distance to destination, and:
* the route to go is drawn as a dotted line on the radar scope (according to scope "show" options);
* the route to go is drawn as a dotted line on the radar scope (according to scope "show" options);
* the current leg is displayed in the selection info pane, including any contained specification;
* details of the current leg are displayed in the selection info pane, and the route dialog enabled for full route viewing;
* the strip shows only the remainder of the route for this contact;
* the strip shows only the remainder of the route for this contact;
* the info box contains the next waypoint and the heading leading the aircraft to it on a great circle, unless:
* the info box contains the next waypoint and the heading leading the aircraft to it on a great circle, unless:
Line 75: Line 77:
If no route can be interpreted (missing or unidentified DEP or ARR), info boxes will show the strip destination detail (ARR) if it is filled, possibly with a heading if it is recognised.
If no route can be interpreted (missing or unidentified DEP or ARR), info boxes will show the strip destination detail (ARR) if it is filled, possibly with a heading if it is recognised.


[[File:ATC-pie-screenshot-separationRings.png|thumbnail|Separation rings, coloured when a conflict is detected and involving the aircraft (see table)]]
[[File:ATC-pie-screenshot-routeConflictDetection.png|thumbnail|Route conflict depiction]]
ATC-pie also features a '''conflict prediction system''', which can be activated or turned off from the ''Options'' menu. It uses route and vector assignments to anticipate and alert you of ''path conflicts'' so you can take action and prevent separation losses.
ATC-pie also features a '''conflict prediction system''', which can be activated or turned off from the ''Options'' menu. It uses route and vector assignments to anticipate and alert you of ''path conflicts'' so you can take action and prevent separation losses.


Line 103: Line 107:
Assuming APP, aircraft requesting ILS must be vectored to intercept a runway localiser and cleared for ILS approach, whereas those requesting visual require vectors until they report the expected runway is in sight. Then, approaching aircraft must be handed over to TWR, unless you are in the TWR position as well. If you are, you must clear them to land—or they will climb back up for go-around—and hand them over to ground control (GND) once they have vacated the runway. Tower also manages departures, which appear ready holding short of runways. After take-off, hand over your strips to departure control, unless assuming DEP yourself. When doing DEP, you must hand outbound aircraft over to the en-route centre (CTR) once they are high enough and close enough to their exit point if specified.
Assuming APP, aircraft requesting ILS must be vectored to intercept a runway localiser and cleared for ILS approach, whereas those requesting visual require vectors until they report the expected runway is in sight. Then, approaching aircraft must be handed over to TWR, unless you are in the TWR position as well. If you are, you must clear them to land—or they will climb back up for go-around—and hand them over to ground control (GND) once they have vacated the runway. Tower also manages departures, which appear ready holding short of runways. After take-off, hand over your strips to departure control, unless assuming DEP yourself. When doing DEP, you must hand outbound aircraft over to the en-route centre (CTR) once they are high enough and close enough to their exit point if specified.


[[File:ATC-pie-screenshot-handoverPane-solo.png|thumbnail|Handover pane when playing solo, assuming all three available positions]]
{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
|+ Handovers with virtual ATCs
|+ Handovers with virtual ATCs
Line 132: Line 137:
|}
|}


'''Vectors''' are given by means of the vectoring assignment tool (click&drag on radar contact for heading, with SHIFT for altitude/FL and speed). '''Other instructions''' (''line up and wait'', ''clear to land'', etc.) can be sent from the instruction dock. Pull it up from the ''View'' menu if it is not visible. Non-vectoring instructions are sent to the callsign entered in the top field, which should fill automatically on aircraft or strip selection if a callsign is known.
'''Vectors''' are given by means of the vectoring assignment tool (click&drag on radar contact for heading, with SHIFT for altitude/FL and speed). '''Other instructions''' (''line up and wait'', ''clear to land'', etc.) can be sent from the instruction dock. Pull it up from the ''View'' menu if it is not visible. Non-vectoring instructions are sent to the callsign entered in the top field, which should fill automatically on aircraft or strip selection if the callsign is known.


Things you can train for:
Things you can train for:
Line 141: Line 146:


=== Tower viewing ===
=== Tower viewing ===
[[File:ATC-pie-screenshot-towerViewing.png|thumbnail|Tower viewing, following a departing aircraft]]
This feature allows you to overlook your airport and the connected (MP) or simulated (solo) traffic, like a controller from a '''tower viewpoint'''. It uses the tower position specified in the source data if any, otherwise defaults to somewhere over the airport to allow towering all available airports.
This feature allows you to overlook your airport and the connected (MP) or simulated (solo) traffic, like a controller from a '''tower viewpoint'''. It uses the tower position specified in the source data if any, otherwise defaults to somewhere over the airport to allow towering all available airports.


Line 146: Line 152:


Running internally only requires FlightGear installed on your computer. A basic installation is enough, but:
Running internally only requires FlightGear installed on your computer. A basic installation is enough, but:
* not all aircraft will be drawn properly if you do not have the corresponding [[Aircraft|models]] installed—it is up to you to add models or create substitution links (in your FlightGear [[$FG_ROOT|root directory]] or in <code>resources/fg-aircraft</code> according to the <code>Notice</code> file), or be happy with the default blue and yellow glider that will stand for any missing model;
* not all aircraft will be drawn properly if you do not have the corresponding [[Aircraft|models]] installed—it is up to you to add models or create substitution links (in your [[$FG_ROOT|FlightGear root directory]] or in <code>resources/fg-aircraft</code> according to the <code>Notice</code> file), or be happy with the default blue and yellow glider that will stand for any missing model;
* more importantly, you will need the [[scenery]] for your airport if you want anything exciting to see (and not sea!)—go to [http://www.flightgear.org/download/scenery/ this page] or use [[TerraSync]] to download it to your computer, and add it to your FlightGear root directory or set the right scenery directory in the ''System'' menu (ATC-pie will pass it on to FlightGear and save your setting).
* more importantly, you will need the [[scenery]] for your airport if you want anything exciting to see (and not sea!)—go to [http://www.flightgear.org/download/scenery/ this page] or use [[TerraSync]] to download it to your computer, and add it to your FlightGear root directory or set the right scenery directory in the ''System'' menu (ATC-pie will pass it on to FlightGear and save your setting).


In either case, once activated from the ''View'' menu, the tower view controller pane is enabled and you can turn to runway points, follow selected aircraft, etc. Additionally, use right click and drag directly on the view to look around, and you may use the <code>x</code>/<code>X</code> keys to change the zoom level from the view window (this is direct FlightGear input).
In either case, once activated from the ''View'' menu, the tower view controller pane is enabled and you can turn to runway points, follow selected aircraft, etc. Additionally, use right click and drag directly on the view to look around, and you may use the <code>x</code>/<code>X</code> keys to change the zoom level from the view window (this is direct FlightGear input).


You can also connect '''additional viewers''' to your session, for example placed around your airport for exciting camera footage of challenging landings. You will not be able to control those viewers from ATC-pie like the tower viewer, but you will be able to activate/stop the connection with a switch in the application ''View'' menu. To do so, start every additional FlightGear viewer with options <code>--multiplay=out,TTT,HHH,PPP</code> and <code>--multiplay=in,TTT,,YYY</code>, and append an option <code>--add-view=XXX:YYY</code> to your ATC-pie command. In these options:
You can also connect '''additional viewers''' to your session, for example placed around your airport for exciting camera footage of challenging landings. You will not be able to control those viewers from ATC-pie like the tower viewer, but you will be able to activate/stop the connection with a switch in the application ''View'' menu. To do so, append an option <code>--add-view=XXX:YYY</code> to your ATC-pie command for every additional FlightGear viewer started on host ''XXX'' with options <code>--multiplay=out,TTT,HHH,PPP</code> and <code>--multiplay=in,TTT,,YYY</code>. In these options:
* ''HHH'' is the host on which ATC-pie is running (same value for all viewers);
* ''HHH'' is the host on which ATC-pie is running (same value for all viewers);
* ''PPP'' is the default 5009, or the chosen port number if ATC-pie is started with <code>--views-send-from</code> (same value for all viewers);
* ''PPP'' is the default 5009, or the chosen port number if ATC-pie is started with <code>--views-send-from</code> (same value for all viewers);
* ''TTT'' is the network polling frequency (100 is common practice; change as desired if you know what you are doing);
* ''TTT'' is the network polling frequency (100 is common practice; change as desired if you know what you are doing);
* ''XXX'' is the host where this viewer is started;
* ''YYY'' is the port number used by the viewer for FGMS packet reception.
* ''YYY'' is the port to use on ''XXX'' for FGMS packet reception by the viewer.


=== Multi-player strip exchange (handovers) and OpenRadar interoperability ===
=== Multi-player strip exchange (handovers) and OpenRadar interoperability ===
[[File:ATC-pie-screenshot-receivedStrip.png|thumbnail|Example of a strip received from "DEL"]]
The handover feature in ATC-pie is based on [[OpenRadar]]'s exchange server to enable ATC coordination between users of both software programs. However, it is to note that their philosophies differ in several ways:
The handover feature in ATC-pie is based on [[OpenRadar]]'s exchange server to enable ATC coordination between users of both software programs. However, it is to note that their philosophies differ in several ways:
* OpenRadar's basic processing unit is the FGMS callsign, whereas ATC-pie's is the strip;
* OpenRadar's basic processing unit is the FGMS callsign, whereas ATC-pie's is the strip;
Line 177: Line 183:
In practice, in ATC-pie, a strip can be handed over by dropping it on the chosen ATC in the list of connected controllers in range. Received strips appear unlinked on the reserved rack, with an identification of the sender which disappears as soon as the strip is clicked on.
In practice, in ATC-pie, a strip can be handed over by dropping it on the chosen ATC in the list of connected controllers in range. Received strips appear unlinked on the reserved rack, with an identification of the sender which disappears as soon as the strip is clicked on.


=== Background drawings ===
=== Background images ===
Background drawings allow to decorate radar scopes with all sorts of maps and useful information about the airspace, terrain or procedures.
[[File:ATC-pie-screenshot-backgroundPixmapDrawing.png|thumbnail|Pixmap image example with a topographic map shot around LIMW (Aosta, Italy)]]
[[File:ATC-pie-screenshot-backgroundHandDrawing.png|thumbnail|Hand drawing example with procedures for LSGG (Geneva, Switzerland)]]
Background images allow to decorate radar scopes with all sorts of maps and useful information about the airspace, terrain or procedures.


There are two ways of drawing in the radar background. One is to import '''image files with transparency''', the other is to write a '''text drawing specification''' file to draw coloured lines and label points. This allows to import anything from the most complex coloured height map to the the most schematic airspace outline. All images are positioned and drawing points specified using lat/lon coordinates or navpoints in radar range. The <code>resources/bgdrawings/Notice</code> file explains how to import and create background drawings.
There are two ways to add images to the radar background. One is to import '''pixmap files''', which may contain transparency. The other is to write a '''text drawing specification''' file to draw coloured lines and label points. This allows to import anything from the most complex coloured height map to the the most schematic airspace outline. All images are positioned with lat/lon coordinates or navpoint names in radar range. The <code>resources/bg-img/Notice</code> file explains how to import and draw background images.


For example, you can map out SID/STAR routes with one image per published chart, named by procedure and associated runways to make in-game selection easy. If you want more than schematic line plots of the procedures, the best way is certainly to draw the images yourself with good enough resolution, e.g. with Gimp. Superimpose a drawing layer on top of a real map canvas, or over a screenshot of your ATC-pie radar with pinned navaids as landmarks. If you have proper to-scale documentation, it is worth trying the command below (requires ''ImageMagick'') to turn the white background of a ready published chart into transparency, and checking if the rendered images are acceptable and zoom-resistant enough.
For example, you can map out SID/STAR routes with one image per published chart, named by procedure and associated runways to make in-game selection easy. If you want more than schematic line plots of the procedures, the best way is certainly to draw the images yourself with good enough resolution, e.g. with Gimp. Superimpose a layer on top of a real map canvas, or over a screenshot of your ATC-pie radar with pinned navaids as landmarks. If you have proper to-scale documentation, it is worth trying the command below (requires ''ImageMagick'') to turn the white background of a ready published chart into transparency, and checking if the rendered images are acceptable and zoom-resistant enough.
:<code>convert -transparent white input-file.png output-file.png</code>
:<code>convert -transparent white input-file.png output-file.png</code>


Use the image positioning helper tool in the ''System'' menu if you want to adjust image corners visually rather than programmatically. All visible pixmap drawings will be moved simultaneously, so you can work with several at a time if you need to. On dialog box close, a file is generated in the <code>output</code> folder for you to open and copy/edit, or use as a direct substitution.
Use the image positioning helper tool in the ''System'' menu if you want to adjust image corners visually rather than programmatically. All visible pixmap images will be moved simultaneously, so you can work with several at a time if you need to. On dialog box close, a file is generated in the <code>output</code> folder for you to open and copy/edit, or use as a direct substitution.


== Tips ==
== Tips ==
Line 212: Line 220:
For more efficient text chat, '''text aliases''' are available and allowed in both instant and preset chat messages, e.g. <code>$wind</code>, <code>$qnh</code>... When the containing message is sent, they automatically expand to the current context-dependant value. Custom aliases can be used, whose replacement will be searched for in the general and airport notes (your notepads) and in the selected strip comments. This allows for variable text by controller, by airport and by radar contact. Have a look at the ''Quick reference'' available from the ''Help'' menu, ''Text aliases'' section. Unsuccessful replacements will trigger an edit box so that you can review your message before sending it.
For more efficient text chat, '''text aliases''' are available and allowed in both instant and preset chat messages, e.g. <code>$wind</code>, <code>$qnh</code>... When the containing message is sent, they automatically expand to the current context-dependant value. Custom aliases can be used, whose replacement will be searched for in the general and airport notes (your notepads) and in the selected strip comments. This allows for variable text by controller, by airport and by radar contact. Have a look at the ''Quick reference'' available from the ''Help'' menu, ''Text aliases'' section. Unsuccessful replacements will trigger an edit box so that you can review your message before sending it.


Everything up to the first pipe character (<code>|</code>, if any) in a text chat line will be stripped before the message is processed and sent. For quicker access to preset messages if you use them and the keyboard a lot, you can therefore '''prefix your messages''' with a custom shortcut and a pipe, which will enable autocompletion to pull up the desired message line as you start typing the prefix. Here is a preset message example enabling something like a dot-command for sending a bearing to your airport to the currently selected pilot:
Everything up to the first pipe character (<code>|</code>, if any) in a text chat line will be stripped before the message is processed and sent. For quicker access to preset messages if you use them and the keyboard a lot, you can therefore '''prefix your messages''' with a custom shortcut and a pipe, which will enable the automatic suggestion list to pull up the desired message line as you start typing the prefix. Here is a preset message example enabling something like a dot-command for sending a bearing to your airport to the currently selected pilot:
: <code>.qdm|Heading to airport $qdm</code>
: <code>.qdm|Heading to airport $qdm</code>
If a troll or angry user is polluting your session with undesired messages, click and hold the ''Dest.'' tool button in the text chat dock to add their callsign to the '''senders blacklist'''. All messages from the user will then be filtered out from the message pane.


=== Strip and flight plan details ===
=== Strip and flight plan details ===
Line 239: Line 249:
'''Q: How do I start anywhere else than bl*ody KSFO?'''
'''Q: How do I start anywhere else than bl*ody KSFO?'''


A: Use a command line argument: <code>./ATC-pie.py ICAO</code>
Use a command line argument: <code>./ATC-pie.py ICAO</code>


'''Q: Why am I not seeing this aircraft on my radar? I know it is there: the pilot is sending chat messages and/or it is visible on the online live map...'''
'''Q: Why am I not seeing this aircraft on my radar? I know it is there: the pilot is sending chat messages and/or it is visible on the online live map...'''


A: You only see an aircraft on your screen if your radar picks up a transponder signal from it. The two following cases will therefore prevent you from seeing a connected aircraft:
You only see an aircraft on your screen if your radar picks up a transponder signal from it. The two following cases will therefore prevent you from seeing a connected aircraft:
# Its onboard transponder is turned off, i.e. not responding to your radar ping, and you should tell the pilot to switch it on. See the [https://www.youtube.com/watch?v=kpPzRiwzx9Q&list=PL1EQKKHhDVJvvWpcX_BqeOIsmeW2A_8Yb&index=1 ATC-pie video tutorial 1]. If the aircraft model does not support the transponder feature, it will be simulated by ATC-pie according to the fallback mode you have selected in the settings dialog; any non-zero mode will do. Another, more radical way is to cheat with menu options "reveal OFF/STBY" or "radar cheat mode" ([https://www.youtube.com/watch?v=lSyH88HR-4w&index=3&list=PL1EQKKHhDVJvvWpcX_BqeOIsmeW2A_8Yb tutorial 3]).
# Its onboard transponder is turned off, i.e. not responding to your radar ping, and you should tell the pilot to switch it on. See the [https://www.youtube.com/watch?v=kpPzRiwzx9Q&list=PL1EQKKHhDVJvvWpcX_BqeOIsmeW2A_8Yb&index=1 ATC-pie video tutorial 1]. If the aircraft model does not support the transponder feature, it will be simulated by ATC-pie according to the fallback mode you have selected in the settings dialog; any non-zero mode will do. Another, more radical way is to cheat with menu options "reveal OFF/STBY" or "radar cheat mode" ([https://www.youtube.com/watch?v=lSyH88HR-4w&index=3&list=PL1EQKKHhDVJvvWpcX_BqeOIsmeW2A_8Yb tutorial 3]).
# The aircraft is under the radar floor setting. Check in the ''General settings'' dialog; set it to "SFC" to pick up all signals.
# The aircraft is under the radar floor setting. Check in the ''General settings'' dialog; set it to "SFC" to pick up all signals.
Line 249: Line 259:
'''Q: What is the strip exchange server? Which one to use?'''
'''Q: What is the strip exchange server? Which one to use?'''


A: The strip exchange feature allows you to hand over strips to ATCs who are connected to the same server and within 180 NM from your position. The public server currently open for general multi-player use is <code>http://h2281805.stratoserver.net/FgFpServer</code>. To hand over a strip, drag it from its rack and drop it on the chosen callsign in the ATC handover list. Publicise your frequency so that ATCs around know what to tell pilots for them to contact you!
The strip exchange feature allows you to hand over strips to ATCs who are connected to the same server and within 180 NM from your position. The public server currently open for general multi-player use is <code>http://h2281805.stratoserver.net/FgFpServer</code>. To hand over a strip, drag it from its rack and drop it on the chosen callsign in the ATC handover list. Publicise your frequency so that ATCs around know what to tell pilots for them to contact you!


'''Q: What nickname should I use for the strip exchange server? Where to get my ID?'''
'''Q: What nickname should I use for the strip exchange server? Where to get my ID?'''


A: This feature is not linked to any account or identification process; just choose any name you would like to be recognised by. It will appear in a tooltip over your callsign in the handover list of ATCs who will connect near enough to see you. In a sense, this feature is more social than technical, but makes sense as typical ATC callsigns remain mostly anonymous over MP. Use this field so that other players can identify you.
This feature is not linked to any account or identification process; just choose any name you would like to be recognised by. It will appear in a tooltip over your callsign in the handover list of ATCs who will connect near enough to see you. In a sense, this feature is more social than technical, but makes sense as typical ATC callsigns remain mostly anonymous over MP. Use this field so that other players can identify you.


'''Q: Can I draw SID and STAR procedures on the radar?'''
'''Q: Can I draw SID and STAR procedures on the radar?'''


A: Yes, and virtually anything else, using background images and hand drawings. To learn how, see the corresponding section above, read the <code>resources/bgdrawings/Notice</code> file and have a look at the packaged example for KSFO.
Yes, and virtually anything else, using background images and hand drawings. To learn how, see the corresponding section above, read the <code>resources/bg-img/Notice</code> file and have a look at the packaged example for KSFO.


'''Q: How do I assign SIDs and STARs to aircraft?'''
'''Q: How do I assign SIDs and STARs to aircraft?'''


A: This question seems asked quite a lot more than it sounds relevant to a real controller's task. Say you could click around the interface and "assign" a STAR to an inbound aircraft; what would the effect be after that? Should this be important to you, you can always freely comment your strips with the information you want to save. But the realistic wishes in relation to this question are already addressed otherwise:
This question seems asked quite a lot more than it sounds relevant to a real controller's task. Say you could click around the interface and "assign" a STAR to an inbound aircraft; what would the effect be after that? Should this be important to you, you can always freely comment your strips with the information you want to save. But the realistic wishes in relation to this question are already addressed otherwise:
* Planning routes
* Planning routes
*: Published standard departure and arrival procedures (SIDs and STARs) are very often relied on when planning a route for an aircraft, usually prior to departure. Hopefully copied straight from an existing flight plan, the route is written on the flight strip, modified as the flight progresses and passed along with handovers. Like any piece of route specification, you can specify that a SID or STAR is to be followed in the strip route field, e.g. "SID FUBAR en route stuff DUMMY STAR". This will even be recognised by ATC-pie and accounted for in the second line of the radar contact info box when appropriate (see feature note on routing).
*: Published standard departure and arrival procedures (SIDs and STARs) are very often relied on when planning a route for an aircraft, usually prior to departure. Hopefully copied straight from an existing flight plan, the route is written on the flight strip, modified as the flight progresses and passed along with handovers. Like any piece of route specification, you can specify that a SID or STAR is to be followed in the strip route field, e.g. "SID FUBAR en route stuff DUMMY STAR". This will even be recognised by ATC-pie and accounted for in the second line of the radar contact info box when appropriate (see feature note on routing).
Line 269: Line 279:
'''Q: FGCom radio is not working. What is going on?'''
'''Q: FGCom radio is not working. What is going on?'''


A: There can be a variety of reasons, all of them to rule out before reporting a bug in the program. Start a single ATC-pie instance and try the echo test (''System'' menu). If it works, you may skip directly to item 3 below.
There can be a variety of reasons, all of them to rule out before reporting a bug in the program. Start a single ATC-pie instance and try the echo test (''System'' menu). If it works, you may skip directly to item 3 below.
# Bad FGCom version setting
# Bad FGCom version setting
#: Verify the "FGCom version" set in the ''System'' menu, which should point to the right executable file under <code>resources/fgcom</code> and suit your operating system (see <code>Notice</code> file). Four versions are initially packaged with ATC-pie: Linux64, Linux32, Mac, Win32.
#: Verify the "FGCom version" set in the ''System'' menu, which should point to the right executable file under <code>resources/fgcom</code> and suit your operating system (see <code>Notice</code> file). Four versions are initially packaged with ATC-pie: Linux64, Linux32, Mac, Win32.
Line 281: Line 291:
'''Q: Tower view is not starting. The menu option is ticked but nothing happens.'''
'''Q: Tower view is not starting. The menu option is ticked but nothing happens.'''


A: Ruling out that FlightGear is not installed at all, your system path settings are probably wrong. From a terminal, find the right command to start FlightGear and enter it as ''FlightGear executable'' from the ''System'' menu. Do not add options of any kind; they will be taken care of internally. You may have to enter a ''[[$FG_ROOT|FlightGear root directory]]'' as well, especially if you have the program files installed somewhere unexpected. Your entries will be saved after that.
Ruling out that FlightGear is not installed at all, your system path settings are probably wrong. From a terminal, find the right command to start FlightGear and enter it as ''FlightGear executable'' from the ''System'' menu. Do not add options of any kind; they will be taken care of internally. You may have to enter a ''FlightGear root directory'' as well, especially if you have the program files installed somewhere unexpected. Your entries will be saved after that.


'''Q: Why is my tower in the middle of the sea, and aircraft water landing/floating?'''
'''Q: Why is my tower in the middle of the sea, and aircraft water landing/floating?'''


A: You are missing the FlightGear scenery data for your location, or ATC-pie does not know where it is. Check out the ''Tower viewing'' feature note in this article.
You are missing the FlightGear scenery data for your location, or ATC-pie does not know where it is. Check out the ''Tower viewing'' feature note in this article.
265

edits