[FUGHTGEAR

A NEW ARCHITECTURE FOR FLIGHTGEAR FLIGHT SIMULATOR

AJ MacLeod, Ampere K. Hardraade, Michael Koehne, Steve Knoblock

MVC architecture,
FDM Server,
FDM Instance,
Client

To continue improving existing features and add new ones, FlightGear
must make better use of computing power. Preparing for the widespread
adoption of multi-core CPU architectures is an important step in
FlightGear's development. Today, CPU clock rate has reached a plateau.
The old idea, that features can be added without regard to their effect on
performance because computers will become ever faster, have ceased to
hold true. In addition, as more features are added, developers are
increasingly bumping up against existing limitations in the current
FlightGear architecture. Now would be a good time to begin the process of
restructuring FlightGear to address the above issues. This proposal
describes a new architecture for FlightGear, one which would greatly
improve FlightGear's efficiency and flexibility by making extensive use of
parallel processing. It is also hoped that this new architecture will improve
the quality of multiuser sessions, as well as providing truer support for the
simulation of time-critical systems.

ABSTRACT

To continue improving existing features
and add new ones, FlightGear must make better
use of computing power. Preparing for the
widespread adoption of multi-core CPU
architectures is an important step in FlightGear's
development. Today, CPU clock rate has reached
a plateau. The old idea, that features can be added
without regard to their effect on performance
because computers will become ever faster, have
ceased to hold true. In addition, as more features
are added, developers are increasingly bumping up
against existing limitations in the current
FlightGear architecture. Now would be a good
time to begin the process of restructuring
FlightGear to address the above issues. This
proposal describes a new architecture for
FlightGear, one which would greatly improve
FlightGear's efficiency and flexibility by making
extensive use of parallel processing. It is also
hoped that this new architecture will improve the
quality of multiuser sessions, as well as providing
truer support for the simulation of time-critical
systems.

INTRODUCTION

Since its inception, FlightGear has proved
to be nothing short of a revolution in flight
simulation. For perhaps the first time, a serious
flight simulator has been available which allows a
vast (and theoretically unlimited) degree of
flexibility and extensibility. For instance, several
FDMs are supported and the output data, both
aeronautical and graphical, can be transmitted,
utilized and displayed in a remarkable number of
ways. Such flexibility and extensibility have
allowed FlightGear to have an impressive
following in the academic and aero-engineering
world.

FlightGear has also found popularity
among hobbyists. As such, the multiuser
implementation and the Al traffic system have
begun to progress into a very usable and important

enhancement to the simulator. In fact, the
multiuser feature has proven to be so popular that
it has caused an unprecedented boost in
FlightGear's user base.

These developments and the simultaneous
developments in the abilities of commonly
available computing hardware have, however,
begun to highlight some fundamental limitations
in the current structure of the FlightGear
simulator. As computing hardware places more
and more emphasis on multiple processor cores
and the threading necessary to take advantage of
these, the current "main loop" of FlightGear
begins to pose severe limitations on the growth of
FlightGear. This can only be addressed by a
restructuring of FlightGear, which, although
certainly far from trivial, will offer large benefits
in many different areas.

This report discusses both the current
problem areas and a proposed solution, and
highlights some of the benefits which will follow
on from such a move.

BACKGROUND

FlightGear is an open source flight
simulator originally developed as a single user
application capable of running on multiple
platforms. The architecture of FlightGear is based
on an infinite loop called the “main loop”. Unlike
the main loop of typical event-driven programs,
the main loop in FlightGear is not a loop which
runs in idle, polling for the user's input. In
FlightGear, many components work in the
background regardless of inputs. Thus, the main
loop in FlightGear is responsible for periodically
telling these components to update themselves.
The main loop was established at the beginning of
the FlightGear project; however, recent work such
as the expansion of multiuser functionality and the
sophisticated Nasal scripting have raised some
questions regarding the current architecture of
FlightGear.

Currently, the following tasks are done

sequentially in the main loop (see Figure 1):
- ATC simulation
- control of Al objects
- update of other aircrafts in a multiuser
environment
- flight dynamics calculations
- scenery update
- audio scheduling
- rendering

As the loop is run, the control of the program is
passed to different sections of the simulator for
handling different tasks. This control is not
returned to the main loop until the task is finished.
To elaborate, the FDM cannot be run until the
renderer is finished updating the scene; Nasal
scripts cannot be run before other components
finish running and the entire sim is frozen while a
script is running. Consequently, the performance
of each component greatly affects all others.

The most resource intensive process in
FlightGear is rendering. A rendering call is made
for every iteration of the main loop. Since control
is passed to the renderer and is not returned until
the renderer finishes with the scene update, the
frequency at which the main loop can run is slaved
to the framerate. It would therefore be more
correct to say that the loop is run once for every
rendering update. This, in turn, affects the
frequency at which other components can run.

Since framerate is a function of scene
complexity and not a constant value, all other
components in the simulator may be updated at
irregular intervals. As a pseudo closed loop
control, the autopilot is one of the systems that is
most sensitive to the fluctuations caused by the
framerate (see Figure 2). When the framerate is
low, the autopilot will overcompensate for an
attitude change. This overcompensation leads to a
rapid attitude change, which is in turn
overcompensated by the autopilot. The result is a
positive feedback ending with the autopilot
plunging the aircraft into the ground. Should the
autopilot be replaced with code that drives a full
flight simulator, low framerate situations could
result in such unpredictable behavior that not only

could cause injury to the occupants, but might also
shake the simulator apart. As a result, FlightGear
is undesirable for use as a serious flight simulator,
and fail one of the primary goals of the project.

y

multiplayer models

flight model

1/0 handling

audio scheduling

update scenery center

audio for user's a/c

fgRequestRedraw

T

-©

Figure 1

This condensed flowchart illustrates some of the tasks
handled by the mainloop. Notice the amount of tasks
that one thread has to handle. Also notice the
rendering request made at the end, essentially tying
the frequency of the loop to the framerate.

Scripts within FlightGear are not immune
to the irregular update interval either.
Theoretically, a Nasal script should be able to run

at a frequency of 100Hz easily. However, since
every component in the simulator is tied to the
framerate, the practical frequency at which a script
can run is that of the scene updates.

Flight Parameters

e

I I
B ET

Tma (g

Flight Parameters (cont'd)

il

E
€
8
E
-]
8
2
E .
8

I I
B0 o]

Tme (s
Flight Parameters (cont'd)

Figure 2

Three graphs showing the effects of framerate hit on
the autopilot. The red line indicates the time of
framerate drop.

With all components controlled from
within one loop, FlightGear is essentially a single
thread application. The present configuration
makes it impossible to control the performance of
individual components. For example, the

framerate cannot be throttled, because doing so
would affect the performance of the FDM engine
as well. Moreover, in order to make everything
run smoothly, the loop must run as quickly as
possible, leading to high loading on a single
processor.

Another consequence of being effectively
single threaded is that all but one CPU sits idle on
multi-processor ~ platforms, forsaking other
resources that could be wused to improve
FlightGear's performance. This problem would
only become more prominent in the future, as
CPU manufacturers have shifted their priority
from increasing CPU clockrates to developing
multi-core processors'. As more features are
added and the main loop becomes ever larger, the
current architecture of FlightGear would only
cause the performance of future versions to
decrease rather than increase.

It should also be noted that FlightGear is
not currently oriented toward multiuser
capabilities. This can be seen from the way
movable objects in the simulator are handled. In
FlightGear, the user's aircraft, AI models, and
aircrafts of other users are all considered as
separate classes. Feature implementation would
require a great deal of redundant coding, as each
feature would need to be duplicated and
implemented differently for different object types.
The current multiuser system also exhibits many
limitations. For instance, the inner workings of Al
models do not allow Al models to be updated at
more than 3HZ?, thus aircraft in the multiuser
environment suffer noticeable jitter. Limitations
also come in the form of constraints on what can
be implemented in a multiuser environment.
Sophisticated ~ features such as multi-pilot
capability are extremely difficult, if not
impractical to add because of the jitter and latency
involved with the current system.

METHODOLOGY

In designing this solution, the foremost
concern is shielding the simulator from the effects
of fluctuating frame rates. For FlightGear to be a

serious flight simulator in the truest sense, the
core components must be run in a time-critical
manner. Therefore, one of the objectives of this
project is to remove the rendering process from the
main loop and place it in a separate thread. Focus
was also placed on restructuring FlightGear from a
single-user application to a fully network-aware
program, so as to benefit the development of
multiuser and other complex simulator
arrangements.

Emphasis was also placed on ensuring that
packets be transferred and received at well
regulated intervals and to unifying how objects are
handled within FlightGear. The design should
incorporate support for desirable features (some
reserved for a future time), such as the ability for
users to switch aircraft while the simulator is
running, showing the same instance of an Al
object across the entire network or the
implementation of multi-pilot capabilities.

PROPOSED SOLUTION

Overview

This document proposes solutions to the
various obstacles standing in the way of further
FlightGear development. Specifically, the existing
code base of FlightGear should be refactored using
MVC (Model-View-Controller) architecture®, a
software architecture in which the data model, user
interface, and control logic are separated into
distinct components. Under this scheme,
FlightGear would be refactored into two primary
independent components, one being an FDM
server hosting the data model, the other a client
handling the viewing and controlling components.
After the refactoring process, FlightGear's
architecture would bear similarities to that of the
X-window system®*.

While not going into too much detail, the
following is a brief description introducing the
model of an FDM server and client. The purpose
of the FDM server is to provide services to
simulate the flight dynamics and systems of
multiple aircraft; in essence, a stripped down

version of FlightGear, without the graphics-related
components. The client is a controller/viewer
without any simulation components, which would
have two responsibilities — to process inputs from
the user and forward them to the server, and to
listen to the servers and display objects in the
scene accordingly.

The FDM server and client would
communicate property changes through UDP
ports. Typically, the server and client would be
hosted on the same machine (see Figure 3),
although they could also be hosted on different
machines (see Figure 4). Inputs from the user are
first processed by the clients, and then sent to the
server. The server would then make adjustments
to the FDM based on the information it has
received from the client.

UDP ports

Client FDM Server

Local machine

Figure 3
FDM Server and Client being hosted on the same
machine.

To reduce the chance of pilot-induced-
oscillation, the frequency at which the client
uploads the user's inputs must be higher than the
typical human reaction time of 0.25s. A suggested
uplink frequency would be above 20Hz for the
setup where the server and the client are hosted on
different computers, but this frequency could be
higher when the server and the clients are being
hosted on the same computer. The frequency of
downlink — the frequency at which the server
broadcasts updates - would be dependent on the
aircraft being flown, although for most aircraft,

this value would be 10Hz.

N

UDP ports UDP ports

Client FDM Server

Local machine Dedicated server

Figure 4
FDM Server and Client being hosted on different
machine.

FDM Server

The FDM server is a component dedicated
mainly to providing flight dynamics simulation
services to the clients. Its responsibility would
include handling communication between the
clients and the FDM, as well as communicating
the position of various aircraft to a multi-player
server. As a server, it would be capable of running
multiple FDMs simultaneously, and if necessary,
merge or average the outputs of these FDMs.

The actual FDM would be encapsulated in
a component called the FDM instance within the
server (see Figure 5). This FDM instance (see
Figure 6) is the “model” portion in the MVC
architecture, and each would have an independent
property tree hosting inputs, outputs,
environmental variables, and other information
about the aircraft being flown, as well as
information about the clients that are related to the
FDM being run. Multiple instances could be run
on the server so that services could be provided to
multiple clients. Since the instances are
completely independent from one another,
partitioning could also be achieved. For example,
a corrupted property tree from one instance would
not pose problems to other instances.

Each FDM instance would carry a unique
ID, which would serve two purposes: to associate
the correct AI model in the viewer with the FDM,
and to identify the aircraft being simulated in a
multiuser environment. The ID of two instances
could be swapped so as to allow the flight
dynamics of an aircraft flown by the client to
change. This feature could allow a user to change
aircraft while the simulator is running, or to
drastically change the handling characteristics of
an aircraft in order to simulate the effects of
structural failures.

UDP ports

Network Manager

FDM FDM FDM
Instance Instance Instance

FDM Server

Figure 5

The FDM Server would be capable of running multiple
FDM Instances. The circle and lines represent
communication channels between various threads.

An FDM server could be dedicated to
hosting Al objects such as the existing aircraft
carrier, which would allow all users to see the
same instance of the Al objects in a multiuser
environment. In addition, the FDM server could
provide a very unique feature: planes that are not
being used could be represented by null FDMs,
with an external “Al server” updating their
positions. An airliner flown by a user could be
turned around and send back to its home airport
automatically. Finally, hosting FDMs on a
dedicated server could allow damage to aircraft to
persist across multiple sessions. As an example, if

a pilot landed a plane too hard, the landing gear of
this plane could collapse on its next landing in a
different session.

Inputs from
Network Manager

Moving average
calculation

n-th iteration?

Outputs to Network
Manager

Figure 6

A conceptual work flow of the FDM Instance. The
purpose of the “moving average calculation” is to filter
out fluctuations from the FDM, so as to reduce the
amount of jitter observed in multiuser mode.

Robustness of FDM Server

Since the server would be expected to
provide service to many users simultaneously, the
server must be very robust and capable of
surviving as well as recovering from multiple
failures.

Due to the amount of uncertainty involved,

one cannot trust the robustness of the code
encapsulated by an FDM instance. In other words,
an assumption has to be made that the
encapsulated code could eventually pose problems.
One method of mitigating such problems is to
avoid them.

Let's assume that a memory leak occurs in
the code being run by one instance. Repeatedly
creating and destroying this instance would result
in pointers being created and not subsequently
freed. Eventually memory would run out, and the
FDM server would likely be killed by the
operating system. This would not only affect the
client hosted by the particular instance, it would
also affect all clients whose FDMs are being
hosted on the server. Therefore, to contain the
effects of memory leaks, only a fixed number of
instances would be initialized for any session of
the server. In other words, no FDM instance
would be created or destroyed while the server is
running. In such a scheme, the mistake of creating
a pointer and not freeing it would only be made
once instead of multiple times. The unused FDM
instances could lie dormant and be skipped by the
Server.

Of course, errors are impossible to avoid
completely. When an unhandled exception occurs,
the FDM server must be able to recover from it:
specifically, methods would be needed to contain
the errors and prevent them from migrating
outward from the encapsulated instance. One
example of a mitigation technique would be to
restart an erroneous component from its last error-
free state. When multiple errors have occurred,
the entire FDM instance could be restarted.
Likewise, if an FDM instance has an error, the
FDM server could restart the instance and let it
continue from the last error-free state. After
multiple failures, the problematic FDM instance
could be shutdown permanently.

The FDM server would also need the
capability to transfer the FDMs it is running to
another trusted server, for many reasons. A client
might want to switch to another server to avoid
network latency, or the server may have
encountered too many errors and is no longer

suitable for providing service. =~ Whatever the
reason, the changeover should not be noticeable at
the client end.

Client

The client (also known as viewer/controller
in MVC terminology) is the portion with which
the user would interact. The client would provide
visual and audio cues to the user and manage
communications between the user and the FDM
Server.

The client would require two threaded
loops, one handling I/O and another rendering.
Leaving aside the I/O handler for the moment, one
can simply view the client as an “observer” that
displays aircraft and objects currently existing in
the multiuser “world”. The point of this design is
to unify into a single object framework, with the
user's aircraft, the AI aircraft and other users'
aircraft in the multiuser environment represented
as a single class of objects. This framework would
create the potential for the sub-classing of any
specialized movable object types, which will
inherit shared characteristics from the parent class.

The I/0O loop handles the communication
between client and server. In addition, the I/O
loop would also manage property changes, as well
as performing audio scheduling. The rendering
loop would be dedicated solely to scene updates.
Having two loops would avoid interference to data
transfer posed by fluctuating framerates. With the
renderer within its own thread, framerate
throttling could also be implemented. A hard limit
could be set (using the sleep() function), which
would maintain the framerate below a certain peak
value. As an alternative, a “soft limit” could be
provided, which would vary the framerate by
adjusting the complexity of the rendered scene.

Separating and encapsulating all visual
rendering into a ‘“‘viewer” allows for multiple
cameras. Cameras could be assigned different
views into the FlightGear environment or assigned
to follow a number of particular aircraft, thus
opening up the possibility of allowing multiple
users to inhabit a single aircraft and operate its

controls (see Figure 7). This latter feature is
critical to realistic simulation of certain aircraft
operations, such as the B-29 or Clipper. Moreover,
the capability to have multiple viewers interacting
in a multiuser environment would allow
FlightGear to be used as an online teaching tool.
An instructor may fly along with the student pilot,
by flying within the same aircraft (using the
copilot's seat view.)

Although it may be something best left to
the future, the new architecture would make it
possible for each client to utilize a different
graphic engine.

FDM Server

Network

Client 1 Client 2

Figure 7
An example of a setup where mulitple users can
inhabit a single aircraft and operate its controls.

SUMMARY
FlightGear is experiencing a rapid
proliferation of sophisticated features. However,

the current architecture of FlightGear prevents the
simulator from utilizing available resources on
multi-processors platforms, as well as on future
multi-core CPUs. In addition, the framerate has
influence on every aspect of FlightGear, causing
the outputs of the simulator to be unpredictable
and making the assumption of correct simulation
of time-critical systems an impossibility.

The proposed new architecture would
address these problems through extensive use of
parallel processing. By moving to a Model-View-
Controller architecture, code division within
FlightGear would become more clear and better
organized. Flexibility would also increase, since
through networking, many new features could be
“added” without having to tamper directly in
FlightGear's source code. Fewer changes to the
FlightGear's source code would also mean that the
simulator would be less error prone.

The multiuser experience would also be
enhanced, as very little effort would be needed to
utilize the new architecture to allow multiple users
to control a single aircraft. Al simulation could be
hosted from a central location on a network,
ensuring the same Al objects are displayed in all
clients that are connected. In the future, ATC and
weather systems could be hosted in the same
manner, ensuring that all users fly in a consistent
weather and air traffic environment.

FlightGear has clearly demonstrated how
well an Open Source Flight Simulator can work.
The past decade of development has allowed us to
gain much knowledge and experience in the area
of flight simulation. Post-1.0 release would be an
ideal time to make use of the knowledge gained to
provide a step change in the flexibility and
opportunities offered by FlightGear.

REFERENCES

1.

2.

Herb Sutter (2005). The Free Lunch Is
Over: A Fundamental Turn Toward
Concurrency in Software. Retreived
March 19, 2006.

Website:
http://www.gotw.ca/publications/concurren
cy-ddj.htm

pigeond (2006). A list of videos captured
from FlightGear's multiuser sessions.
Retreived March 19, 2006.

Website:
http://www.pigeond.net/photos/FlightGear/
videos/

Wikipedia (2006). Model View Controller.
Retreived March 19, 2006.

Website:
http://en.wikipedia.org/wiki/Model view
controller

Wikipedia (2006). X Window System
protocols and architecture. Retreived
March 19, 2006.

Website:

http://en.wikipedia.org/wiki/X Window S
ystem protocols and architecture

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://en.wikipedia.org/wiki/X_Window_System_protocols_and_architecture
http://en.wikipedia.org/wiki/X_Window_System_protocols_and_architecture
http://en.wikipedia.org/wiki/Model_view_controller
http://en.wikipedia.org/wiki/Model_view_controller
http://www.pigeond.net/photos/flightgear/videos/
http://www.pigeond.net/photos/flightgear/videos/

	A NEW ARCHITECTURE FOR FLIGHTGEAR FLIGHT SIMULATOR
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	METHODOLOGY
	PROPOSED SOLUTION
	Overview
	FDM Server
	Robustness of FDM Server
	Client

	SUMMARY
	REFERENCES

